
I

Swarm Robotics,
From Biology to Robotics

Swarm Robotics,
From Biology to Robotics

Edited by
Ester Martínez Martín

In-Tech
intechweb.org

Published by In-Teh

In-Teh
Olajnica 19/2, 32000 Vukovar, Croatia

Abstracting and non-profit use of the material is permitted with credit to the source. Statements and
opinions expressed in the chapters are these of the individual contributors and not necessarily those of
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or
property arising out of the use of any materials, instructions, methods or ideas contained inside. After
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in any
publication of which they are an author or editor, and the make other personal use of the work.

© 2010 In-teh
www.intechweb.org
Additional copies can be obtained from:
publication@intechweb.org

First published March 2010
Printed in India

Technical Editor: Maja Jakobovic
Cover designed by Dino Smrekar

Swarm Robotics, From Biology to Robotics,
Edited by Ester Martínez Martín

	 p. cm.
ISBN 978-953-307-075-9

V

Preface

In nature, it is possible to observe a cooperative behaviour in all animals, since, according
to Charles Darwin’s theory, every being, from ants to human beings, form groups in which
most individuals work for the common good. However, although study of dozens of social
species has been done for a century, details of how and why cooperation evolved remain
to be worked out. Actually, cooperative behaviour has been studied from different points
of view. For instance evolutionary biologists and animal behaviour researchers look for the
genetic basis and molecular drivers of this kind of behaviours, as well as the physiological,
environmental, and behavioural impetus for sociality; while neuroscientists discover key
correlations between brain chemicals and social strategies. From a more mathematical point
of view, economics have developed a modelling approach, based on game theory, to quantify
cooperation and predict behavioural outcomes under different circumstances. Although
game theory has helped to reveal an apparently innate desire for fairness, developed models
are still imperfect. Furthermore, social insect behaviour, from a biological point of view, might
be emulated by a micro-robot colony and, in that way, analysis of a tremendous amount of
insect trajectories and manual event counting is replaced by tracking several miniature robots
on a desktop table.

Swarm robotics is a new approach that emerged on the field of artificial swarm intelligence, as
well as the biological studies of insects (i.e. ants and other fields in nature) which coordinate
their actions to accomplish tasks that are beyond the capabilities of a single individual. In
particular, swarm robotics is focused on the coordination of decentralised, self-organised
multi-robot systems in order to describe such a collective behaviour as a consequence of local
interactions with one another and with their environment.

Research in swarm robotics involves from robot design to their controlling behaviours, by
including tracking techniques for systematically studying swarm-behaviour. Moreover,
swarm robotic-based techniques can be used in a number of applications. This is, for instance,
the case of the Particle Swarm Optimization (PSO) which is a direct search method, based
on swarm concepts, that models and predicts social behaviour in the presence of objectives.
In this case, the swarm under study is typically modelled by particles in multidimensional
space that have two essential reasoning capabilities: their memory of their own best position
and the knowledge of the global or their neighbourhood’s best, such that swarm members
communicate good positions to each other and adjust their own position and velocity based
on those good positions in order to obtain the best problem solution.

Different challenges have to be solved in the field of swarm robotics. This book is focused
on real practical applications by analyzing how individual robotic agents should behave in a
robotic swarm in order to achieve a specific goal such as target localization or path planning.

VI

In this context, the first paper, by Hereford and Siebold, concentrates on looking for a target
in a room. They describe, on the one hand, the way a PSO algorithm, based on bird flocking,
may be embedded into a robot swarm; and, on the other, the implementation of a four-step
trophallactic behaviour of social insects in a robotic platform by making sensor measurements
instead of exchanging information when two or more particles are in contact. Different
software and hardware tests were developed to evaluate both search strategy performances.

Another issue which may be solved by PSO methods is the robotic cell problem, where each
integrating machine could be identified as a member of a swarm. In this context, Kamalabadi
et al. present a hybrid PSO algorithm to find a schedule robot movement to minimize cycle
time when multiple-type parts three-machine robotic cells are considered. Its performance
has been compared with three well-known metaheuristic algorithms: Genetic Algorithm
(GA), Basic Algorithm (PSO-

I) and Constriction Algorithm (PSO-II), by succeeding in the most problems, especially for
large-sized ones.

The next two papers have focused on the problem of path planning for mobile robots. Firstly,
Curkovic et al. introduce a way to solve the navigation problem for a robot in a workspace
containing differently shaped and distributed by means of a simplification of Honey Bees
Mating Algorithm. Moreover, a plan optimization technique that results in a minimization
of the required time or the travelled distance is proposed. Again, method performance is
successfully evaluated with respect to the Genetic Algorithm. Secondly, Xue et al. apply
PSO-type control for real-time path planning on a typical swarm of wheeled mobile robots
in an unstructured environment. Furthermore, an overview of a system modelling at both
individual and swarm levels as well as a fusion-framework is presented. Their study was
tested through virtual signal generators and simulations about swarm-component measuring
and fusing.

Another application of the PSO techniques is the design of an infinite impulse response (IIR)
digital filter of robot force/position sensors. Zhang proposes an IIR filter design from the
knowledge of the structure of a filter and master of an intelligent optimization algorithm.
The PSO algorithm is then used to optimize parameter values. Newly, simulation is used to
validate the developed technique.

Finally, it is essential to systematically study and test swarm-behaviour by analyzing what
each swarm member is doing as well as where and when it acts. For that purpose, Martínez
and del Pobil has developed a visual application that robustly identifies and tracks all robotic
swarm members. Different situations and visual systems were studied to achieve that goal.
Experimental results on a real system are also presented.

This book has only provided a partial picture of the field of swarm robotics by focusing on
practical applications. The global assessment of the contributions contained in this book is
reasonably positive since they highlighted that it is necessary to adapt and remodel biological
strategies to cope with the added complexity and problems that arise when robot individuals
are considered.

Ester Martínez Martín

VII

Contents

Preface	 V

1.	 Bio-inspired search strategies for robot swarms	 001
James M. Hereford and Michael A. Siebold

2.	 A New Hybrid Particle Swarm Optimization Algorithm 	
to the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem	 027
Isa Nakhai Kamalabadi, Ali Hossein Mirzaei and Saeede Gholami

3.	 Comparison of Swarm Optimization and Genetic Algorithm 	
for Mobile Robot Navigation	 047
Petar Ćurković, Bojan Jerbić and Tomislav Stipančić

4.	 Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion 	
and Path Planning	 059
Songdong Xue, Jianchao Zeng and Jinwei Guo

5.	 Optimization Design Method of IIR Digital Filters for Robot 	
Force Position Sensors	 081
Fuxiang Zhang

6.	 Visual Analysis of Robot and Animal Colonies	 091
E. Martínez and A.P. del Pobil

VIII

Bio-inspired search strategies for robot swarms 1

Bio-inspired search strategies for robot swarms

James M. Hereford and Michael A. Siebold

X

Bio-inspired search strategies for robot swarms

James M. Hereford and Michael A. Siebold
Murray State University, Murray, KY

USA

1. Introduction

Our goal is as follows: build a suite/swarm of (very) small robots that can search a room for
a “target”. We envision that the robots will be about the size of a quarter dollar, or smaller,
and have a sensor or sensors that “sniff” out the desired target. For example, the target
could be a bomb and the robot sensors would be a chemical detectors that can distinguish
the bomb from its surroundings. Or the target could be a radiation leak and the sensors
would be radiation detectors. In each search scenario, we assume that the target gives off a
diffuse residue that can be detected with a sensor.
It is not very efficient to have the suite of robots looking randomly around the room hoping
to “get lucky” and find the target. There needs to be some way to coordinate the
movements of the many robots. There needs to be an algorithm that can guide the robots
toward promising regions to search while not getting distracted by local variations. The
search algorithm must have the following constraints:
 The search algorithm should be distributed among the many robots. If the algorithm is

located in one robot, then the system will fail if that robot fails.
 The search algorithm should be computationally simple. The processor on each bot is

small, has limited memory, and there is a limited power source (a battery) so the
processor needs to be power efficient. Therefore, the processor will be a simple
processor.

 The algorithm needs to be scalable from one robot up to 10’s, 100’s, even 1000’s of
robots. The upper limit on the number of robots will be set by the communication links
among the robots; there needs to be a way to share information among the robots
without requiring lots of communication traffic.

 The search algorithm must allow for contiguous movement of the robots.
This chapter will describe two search strategies for robot swarms that are based on
biological systems. The first search strategy is based on the flocking behavior of birds and
fishes. This flocking behavior is the inspiration behind the Particle Swarm Optimization
(PSO) algorithm that has been used in software for many types of optimization problems. In
the PSO algorithm the potential solutions, called particles, “fly” through the problem space
by following some simple rules. All of the particles have a fitness value based on the value
or measurement at the particle’s position and have velocities which direct the flight of the
particles. The velocity of each particle is updated based on the particle’s current velocity as
well as the best fitness of any particle in the group.

1

Swarm Robotics, From Biology to Robotics2

We describe how the PSO algorithm can be embedded into a robot swarm by letting each
bot’s behavior be like a particle in the PSO. We call the algorithm the physically embedded
PSO (pePSO). The bots swarm throughout the search space and take measurements. Over
time, they cluster near the peak(s) or targets. We show through both 2D simulation results
and robot hardware results that the pePSO effectively finds the targets with a minimum
number of bot-bot communications.
The second search strategy is based on the trophallactic behavior of social insects.
Trophallaxis is the exchange of fluid by direct mouth-to-mouth contact. This phenomenon is
observed in ants, bees, wasps and even dogs and birds. In our trophallaxis-based algorithm,
the bots do not actually exchange information but instead make sensor measurements when
two or more bots/particles are “in contact”. The bots remain stationary for a certain time
that is proportional to the measurement value. Bots thus cluster in areas of the search space
that have high fitness/measurement values.
This new trophallaxis-based search algorithm has several advantages over other swarm-
based search techniques. First, no bot-bot communication is required. Thus, there is no
concern with communication radius, protocol, or bandwidth. Second, the bots do not have
to know their position. During the search, the bot/particle moves randomly except when it
collides and stops, takes a measurement, and waits. At the end of the search, the cluster
locations can be determined from a remote camera, special-purpose robot, or human
canvassing.
This paper is organized as follows: section 2 gives background on the Particle Swarm
Optimization algorithm and its use in robot swarms and section 3 gives results from
simulations and hardware results of embedding the PSO into a robot swarm. Section 4
discusses the trophallaxis- based search algorithm and section 5 gives simulation results
using the trophallaxis algorithm. In section 6 we give our conclusions.

2. Particle Swarm Optimization and robots

In Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995; Clerc &Kennedy, 2002;
Eberhart & Shi, 2004), the potential solutions, called particles, “fly” through the problem
space by following some simple rules. All of the particles have fitness values based on their
position and have velocities which direct the flight of the particles. PSO is initialized with a
group of random particles (solutions), and then searches for optima by updating
generations. In every iteration, each particle is updated by following two "best" values. The
first one is the best solution (fitness) the particle has achieved so far. This value is called
pbest. Another "best" value that is tracked by the particle swarm optimizer is the best value
obtained so far by any particle within the neighborhood. This best value is a neighborhood
or local best and called lbest.
After finding the two best values, the particle updates its velocity and positions with
following equations:
    npnlbestrcnpnpbestrcnviwnv  *2*2*1*11

 (1)

11  nvnpnp

 (2)

wi is the inertia coefficient which slows velocity over time; vn is the current particle velocity;

pn is the current particle position in the search space; r1 and r2 are random numbers
between (0,1); c1 and c2 are learning factors. The stop condition is usually the maximum
number of allowed iterations for PSO to execute or the minimum error requirement.
Because of the required search algorithm characteristics listed in section 1, we chose the PSO
as the starting point for the search control algorithm. The PSO is computationally simple. It
requires only four multiplies and four add/subtracts to update the velocity and then one
add to update the position. The PSO can also be a distributed algorithm. Each
agent/particle/bot can update its own velocity and position. The only external information
is the local best – the best value by any particle within the neighborhood. The calculation of
the local best can be done with a simple comparative statement. Thus, each bot does not
need to know the results from each member of the population as in many traditional
schemes. (Though in some versions of the PSO, the lbest is replaced by gbest, the global
best – the best value of any particle within the population.)
The PSO also allows the contiguous movement of the bots. The updated position is relative
to the current position so there are no jump changes in position or random movements. If
there are constraints on the movement of the bot during each iteration, then limitations can
be placed on the maximum and minimum velocity that is allowed for each particle/bot.
We propose embedding the PSO into a swarm of robots. In our approach, each bot is
behaves as one particle in the PSO. Thus, each bot moves based on the PSO update
equations (eqs. 1 and 2), makes a measurement and then broadcasts to the other bots in the
swarm if it finds a new lbest measurement. We make some slight changes to the classic PSO
algorithm to make it work with a robot swarm, so we call our algorithm the physically-
embedded PSO (pePSO).
Other authors have investigated using biological principles (Zarzhitsky & Spears, 2005;
Valdastri et al., 2006; Schmickl & Crailsheim, 2006; Triannni et al., 2006) and PSO-type
algorithms (Hayes et al., 2000; Hayes et al., 2002, Doctor et al., 2004; Pugh & Martinoli, 2006;
Pugh & Martinoli, 2007; Jatmiko et al., 2006; Jatmiko et al., 2007) with multiple (simple)
robots for search applications. Specifically, Hayes et al. report using autonomous mobile
robots for beacon localization (Hayes et al., 2000) and plume tracking/odor source
localization (Hayes et al., 2002); they base their search techniques on biological principles
(surge “upwind”) but do not use the PSO algorithm directly. Doctor et al. (Doctor et al.,
2004) discuss using the PSO for multiple robot searches. Their focus is on optimizing the
parameters of the search PSO and do not consider the scalability of the standard PSO to
large numbers of robots.
There are at least three other research groups that have investigated using mobile robots to
do searches under the control of a PSO algorithm. Pugh et al. (Pugh & Martinoli, 2006; Pugh
& Martinoli, 2007), explored using PSO on problems in noisy environments, focusing on
unsupervised robotic learning. They used the PSO to evolve a robot controller that avoids
obstacles and finds the source. They also investigated the possibility of using PSO without
global position information. Jatmiko et al. (Jatmiko et al., 2006; Jatmiko et al., 2007) used
mobile robots for plume detection and traversal. They utilized a modified form of the PSO
to control the robots and consider how the robots respond to search space changes such as
turbulence and wind changes. Akat and Gazi (Akat and Gazi, 2008) propose a version of
the PSO for robot swarms that uses dynamic neighborhoods and asynchronous updates.

Bio-inspired search strategies for robot swarms 3

We describe how the PSO algorithm can be embedded into a robot swarm by letting each
bot’s behavior be like a particle in the PSO. We call the algorithm the physically embedded
PSO (pePSO). The bots swarm throughout the search space and take measurements. Over
time, they cluster near the peak(s) or targets. We show through both 2D simulation results
and robot hardware results that the pePSO effectively finds the targets with a minimum
number of bot-bot communications.
The second search strategy is based on the trophallactic behavior of social insects.
Trophallaxis is the exchange of fluid by direct mouth-to-mouth contact. This phenomenon is
observed in ants, bees, wasps and even dogs and birds. In our trophallaxis-based algorithm,
the bots do not actually exchange information but instead make sensor measurements when
two or more bots/particles are “in contact”. The bots remain stationary for a certain time
that is proportional to the measurement value. Bots thus cluster in areas of the search space
that have high fitness/measurement values.
This new trophallaxis-based search algorithm has several advantages over other swarm-
based search techniques. First, no bot-bot communication is required. Thus, there is no
concern with communication radius, protocol, or bandwidth. Second, the bots do not have
to know their position. During the search, the bot/particle moves randomly except when it
collides and stops, takes a measurement, and waits. At the end of the search, the cluster
locations can be determined from a remote camera, special-purpose robot, or human
canvassing.
This paper is organized as follows: section 2 gives background on the Particle Swarm
Optimization algorithm and its use in robot swarms and section 3 gives results from
simulations and hardware results of embedding the PSO into a robot swarm. Section 4
discusses the trophallaxis- based search algorithm and section 5 gives simulation results
using the trophallaxis algorithm. In section 6 we give our conclusions.

2. Particle Swarm Optimization and robots

In Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995; Clerc &Kennedy, 2002;
Eberhart & Shi, 2004), the potential solutions, called particles, “fly” through the problem
space by following some simple rules. All of the particles have fitness values based on their
position and have velocities which direct the flight of the particles. PSO is initialized with a
group of random particles (solutions), and then searches for optima by updating
generations. In every iteration, each particle is updated by following two "best" values. The
first one is the best solution (fitness) the particle has achieved so far. This value is called
pbest. Another "best" value that is tracked by the particle swarm optimizer is the best value
obtained so far by any particle within the neighborhood. This best value is a neighborhood
or local best and called lbest.
After finding the two best values, the particle updates its velocity and positions with
following equations:
    npnlbestrcnpnpbestrcnviwnv  *2*2*1*11

 (1)

11  nvnpnp

 (2)

wi is the inertia coefficient which slows velocity over time; vn is the current particle velocity;

pn is the current particle position in the search space; r1 and r2 are random numbers
between (0,1); c1 and c2 are learning factors. The stop condition is usually the maximum
number of allowed iterations for PSO to execute or the minimum error requirement.
Because of the required search algorithm characteristics listed in section 1, we chose the PSO
as the starting point for the search control algorithm. The PSO is computationally simple. It
requires only four multiplies and four add/subtracts to update the velocity and then one
add to update the position. The PSO can also be a distributed algorithm. Each
agent/particle/bot can update its own velocity and position. The only external information
is the local best – the best value by any particle within the neighborhood. The calculation of
the local best can be done with a simple comparative statement. Thus, each bot does not
need to know the results from each member of the population as in many traditional
schemes. (Though in some versions of the PSO, the lbest is replaced by gbest, the global
best – the best value of any particle within the population.)
The PSO also allows the contiguous movement of the bots. The updated position is relative
to the current position so there are no jump changes in position or random movements. If
there are constraints on the movement of the bot during each iteration, then limitations can
be placed on the maximum and minimum velocity that is allowed for each particle/bot.
We propose embedding the PSO into a swarm of robots. In our approach, each bot is
behaves as one particle in the PSO. Thus, each bot moves based on the PSO update
equations (eqs. 1 and 2), makes a measurement and then broadcasts to the other bots in the
swarm if it finds a new lbest measurement. We make some slight changes to the classic PSO
algorithm to make it work with a robot swarm, so we call our algorithm the physically-
embedded PSO (pePSO).
Other authors have investigated using biological principles (Zarzhitsky & Spears, 2005;
Valdastri et al., 2006; Schmickl & Crailsheim, 2006; Triannni et al., 2006) and PSO-type
algorithms (Hayes et al., 2000; Hayes et al., 2002, Doctor et al., 2004; Pugh & Martinoli, 2006;
Pugh & Martinoli, 2007; Jatmiko et al., 2006; Jatmiko et al., 2007) with multiple (simple)
robots for search applications. Specifically, Hayes et al. report using autonomous mobile
robots for beacon localization (Hayes et al., 2000) and plume tracking/odor source
localization (Hayes et al., 2002); they base their search techniques on biological principles
(surge “upwind”) but do not use the PSO algorithm directly. Doctor et al. (Doctor et al.,
2004) discuss using the PSO for multiple robot searches. Their focus is on optimizing the
parameters of the search PSO and do not consider the scalability of the standard PSO to
large numbers of robots.
There are at least three other research groups that have investigated using mobile robots to
do searches under the control of a PSO algorithm. Pugh et al. (Pugh & Martinoli, 2006; Pugh
& Martinoli, 2007), explored using PSO on problems in noisy environments, focusing on
unsupervised robotic learning. They used the PSO to evolve a robot controller that avoids
obstacles and finds the source. They also investigated the possibility of using PSO without
global position information. Jatmiko et al. (Jatmiko et al., 2006; Jatmiko et al., 2007) used
mobile robots for plume detection and traversal. They utilized a modified form of the PSO
to control the robots and consider how the robots respond to search space changes such as
turbulence and wind changes. Akat and Gazi (Akat and Gazi, 2008) propose a version of
the PSO for robot swarms that uses dynamic neighborhoods and asynchronous updates.

Swarm Robotics, From Biology to Robotics4

3. pePSO results

3.1 Simulation Conditions
We simulated the pePSO using three different test functions and five different target points
with each function. The five different target points are shown in Figure 1. Only one target
point was active during each simulation run; that is, there is only one target value in the
search space at a time.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X-axis

Y
-a

xi
s 1

2

3

4

5

Fig. 1. Map of simulation search space scaled to cover -1 to +1 and showing the 5 different
target point locations.

The three functions used in the simulation were the parabolic/spherical function, Rastrigin
function, and Rosenbrock function. The three test functions are given by:

parabolic/spherical:
 2

arg
2

arg)()(),(ettett yyxxyxf  (3)

Rastrigin:

2 2
arg arg arg arg(,) () 10 cos(2 ()) 10) () 10 cos(2 ()) 10)t et t et t et t etf x y x x x x y y y y           (4)

Rosenbrock:

 22

argarg
2

arg))1()1((100))1(1(),( ettettett xxyyxxyxf (5)

where (x,y) is the position of the bot/particle and (xtarget, ytarget) is the position of the target
point. The spherical function was chosen because it approximates the expected dissipation
pattern of chemicals, heat, etc that would be emitted by real-world targets. The Rastrigin
and Rosenbrock functions were chosen because they are commonly used functions in PSO
testing and they approximate a search space with obstacles and undulations. The
Rosenbrock function used in our simulations is slightly different than the one reported in
other simulations. We have shifted the minimum value of the function to the target location

instead of offset by (1,1) in x and y. This ensures that the target point is within the search
space.
Plots of the three test functions are shown in Figure 2. In each case, we are trying to find the
location of the global minimum. The size of the search spaces were -100 to 100 for the
parabolic function and -5.1 to 5.1 for the Rastrigin and Rosenbrock functions. (The
dimensions correspond roughly to meters as we set the velocity on the bot based on meters
per second.) Unlike most PSO simulations, the search space boundary for our simulations
represents a “hard” border – the particles/bots can not go outside the search space. We use
a hard border because we want to approximate the conditions of actual robots searching in a
room or some other confined space. The target point locations shown in Figure 1 were
scaled for each of the search spaces. The (x,y) target locations are given in Table 1.

Target
point

Parabolic Rastrigin/
Rosenbrock

1 (0,0) (0,0)
2 (94.7, 90.0) (4.86, 4.61)
3 (45.1, -98.5) (2.3, -5.02)
4 (-48.0, -52.7) (-2.46, -2.71)
5 (-79.6, 29.9) (-4.1, 1.54)

Table 1. Target Locations for each of the three Test Functions

Fig. 2. Plots of three test functions. (a) Parabolic function with contours. Min value (the
target value) is at [-4.1 1.54]; (b) Rastrigin function with min (target) point at -2.46 -2.71; (b)
Rosenbrock function with target point = [0 0]. Min value is at a saddle point.

Bio-inspired search strategies for robot swarms 5

3. pePSO results

3.1 Simulation Conditions
We simulated the pePSO using three different test functions and five different target points
with each function. The five different target points are shown in Figure 1. Only one target
point was active during each simulation run; that is, there is only one target value in the
search space at a time.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X-axis

Y
-a

xi
s 1

2

3

4

5

Fig. 1. Map of simulation search space scaled to cover -1 to +1 and showing the 5 different
target point locations.

The three functions used in the simulation were the parabolic/spherical function, Rastrigin
function, and Rosenbrock function. The three test functions are given by:

parabolic/spherical:
 2

arg
2

arg)()(),(ettett yyxxyxf  (3)

Rastrigin:

2 2
arg arg arg arg(,) () 10 cos(2 ()) 10) () 10 cos(2 ()) 10)t et t et t et t etf x y x x x x y y y y           (4)

Rosenbrock:

 22

argarg
2

arg))1()1((100))1(1(),( ettettett xxyyxxyxf (5)

where (x,y) is the position of the bot/particle and (xtarget, ytarget) is the position of the target
point. The spherical function was chosen because it approximates the expected dissipation
pattern of chemicals, heat, etc that would be emitted by real-world targets. The Rastrigin
and Rosenbrock functions were chosen because they are commonly used functions in PSO
testing and they approximate a search space with obstacles and undulations. The
Rosenbrock function used in our simulations is slightly different than the one reported in
other simulations. We have shifted the minimum value of the function to the target location

instead of offset by (1,1) in x and y. This ensures that the target point is within the search
space.
Plots of the three test functions are shown in Figure 2. In each case, we are trying to find the
location of the global minimum. The size of the search spaces were -100 to 100 for the
parabolic function and -5.1 to 5.1 for the Rastrigin and Rosenbrock functions. (The
dimensions correspond roughly to meters as we set the velocity on the bot based on meters
per second.) Unlike most PSO simulations, the search space boundary for our simulations
represents a “hard” border – the particles/bots can not go outside the search space. We use
a hard border because we want to approximate the conditions of actual robots searching in a
room or some other confined space. The target point locations shown in Figure 1 were
scaled for each of the search spaces. The (x,y) target locations are given in Table 1.

Target
point

Parabolic Rastrigin/
Rosenbrock

1 (0,0) (0,0)
2 (94.7, 90.0) (4.86, 4.61)
3 (45.1, -98.5) (2.3, -5.02)
4 (-48.0, -52.7) (-2.46, -2.71)
5 (-79.6, 29.9) (-4.1, 1.54)

Table 1. Target Locations for each of the three Test Functions

Fig. 2. Plots of three test functions. (a) Parabolic function with contours. Min value (the
target value) is at [-4.1 1.54]; (b) Rastrigin function with min (target) point at -2.46 -2.71; (b)
Rosenbrock function with target point = [0 0]. Min value is at a saddle point.

Swarm Robotics, From Biology to Robotics6

The simulation incorporated the mobility limitations of our small robots. The max turning
radius allowed was 36 degrees and the maximum velocity was 0.9 m/s. The bots were
positioned randomly around the search space at t = 0. In our expected deployment scenario
the bots will most likely be “dropped off” at a particular point (e.g., near a door or window)
and not dispersed randomly about the search space. However, we can easily incorporate a
dispersion algorithm (Hsiang et al. 2002; Morlok & Gini, 2004) to spread the bots
throughout the search space before beginning the search phase using pePSO.
For the simulation results, we used the following parameter values. Inertia coefficient, wi,
was set to 0.9. The max velocity of the bots was set to 0.9 m/s. Note that this is different
than the old Vmax parameter in the original version of the PSO. We set an initial v for each
bot/particle to simulate the behavior of the physical robot. The c1 and c2 coefficients were
both set to 2.1. Since only three bots were used, the lbest topology was the same as gbest.
That is, all of the bots communicated gbest and gbest location with all of the other bots.
One major difference between our simulations and the PSO results reported in the literature
is how we calculate a successful search, and, relatedly, the stop condition. A successful
search occurred when a bot/particle got within a tolerance of 0.2 in the x and y dimensions
of the target location. Most PSO researchers track function value but we used location
because of our search application. The simulation stopped when a bot got near the target or
when 5400 function evaluations (about 15 minuntes) elapsed. Compared to other results,
5400 is a relatively small number of function evaluations but we want the bots to find the
target within a reasonable time period.

3.2 Simulation results
To evaluate the effectiveness of the pePSO, we made several simulation runs. An effective
“hit” occurred when one of the bots found the global peak within 15 minutes of simulation
time (5400 function iterations). We used the 5 different target points and did 200 test cases
for each target point for a total of 1000 runs for each test function. In each test case, the
initial start locations of the bots were different. We evaluated the overall effectiveness of the
algorithm (i.e., how many times it found the “target”) and compared the pePSO to the
standard PSO. In tables 2, 3 and 4 we compare the pePSO to the standard PSO with the
number of particles set to 3. We modified the standard PSO to calculate the percent found
(number of hits) based on proximity to the target location rather than on the function value
so that it was consistent with the pePSO. The tables report the percentage of targets found.
The results are shown for each of the three test functions as well as the total for all five target
points.
For all three test functions, the pePSO performed much better than the PSO using same
number of particles.

 Target point
1

Target point
2

Target point
3

Target point
4

Target
point 5

Tot
al

PSO 100 38.5 51 98 90.5 75.6
pePSO 99.5 99.5 99.5 99.5 100 99.6

Table 2. Parabolic Function, Results show the percent of targets found (out of 200 searches)
for each of the five target points and also the overall results.

 Target
point 1

Target
point 2

Target
point 3

Target
point 4

Target
point 5

Total

PSO 31 33.5 48 26 19 31.5
pePSO 97.5 96.5 65.5 99.5 92 90.2

Table 3. Rastrigin Function. Results show the percent of targets foune (out of 200 searches)
for each of the five target points and also the overall results.

 Target
point 1

Target
point 2

Target
point 3

Target
point 4

Target
point 5

Total

PSO 75 53 29.5 51.5 45 50.8
pePSO 86.5 92 55.5 88.5 92 82.9

Table 4. Rosenbrock Function. Results show the percent of targets foune (out of 200
searches) for each of the five target points and also the overall results.

The results in Tables 2-4 show that none of the algorithms found the target location 100% of
the time, even with a relatively easy problem like the parabolic function. There are a
number of reasons for the missed detections. First, we declared a failed search after
relatively few function evaluations (relative compared to other researchers’ results); we
limited both the standard PSO and the pePSO to 5400 function evaluations. Second, we are
not using very many particles/bots. Third, we have placed some of the target locations at
positions near the edge of the search space which makes it somewhat more difficult for the
PSO to find them.

3.3 Hardware test conditions
To investigate the effectiveness of the pePSO algorithm, we did several hardware
experiments. In the experiments, a diffuse light source was placed near the ceiling of a dark
room and pointed downward. Bots with light sensors were placed at various starting
positions about 2 m apart to see (a) how often and (b) how quickly they could find the
brightest spot of light in the room.
The layout of the test area is shown in Figure 3. The hatched boxes in the middle represent the
obstacles that we placed in the search space for the second half of the testing. The highest
concentration of light is immediately to the left of the vertical obstacle. Since we are using a
diffuse light source, the global best is actually a rectangle approximately .25 m by .3 m.

Bio-inspired search strategies for robot swarms 7

The simulation incorporated the mobility limitations of our small robots. The max turning
radius allowed was 36 degrees and the maximum velocity was 0.9 m/s. The bots were
positioned randomly around the search space at t = 0. In our expected deployment scenario
the bots will most likely be “dropped off” at a particular point (e.g., near a door or window)
and not dispersed randomly about the search space. However, we can easily incorporate a
dispersion algorithm (Hsiang et al. 2002; Morlok & Gini, 2004) to spread the bots
throughout the search space before beginning the search phase using pePSO.
For the simulation results, we used the following parameter values. Inertia coefficient, wi,
was set to 0.9. The max velocity of the bots was set to 0.9 m/s. Note that this is different
than the old Vmax parameter in the original version of the PSO. We set an initial v for each
bot/particle to simulate the behavior of the physical robot. The c1 and c2 coefficients were
both set to 2.1. Since only three bots were used, the lbest topology was the same as gbest.
That is, all of the bots communicated gbest and gbest location with all of the other bots.
One major difference between our simulations and the PSO results reported in the literature
is how we calculate a successful search, and, relatedly, the stop condition. A successful
search occurred when a bot/particle got within a tolerance of 0.2 in the x and y dimensions
of the target location. Most PSO researchers track function value but we used location
because of our search application. The simulation stopped when a bot got near the target or
when 5400 function evaluations (about 15 minuntes) elapsed. Compared to other results,
5400 is a relatively small number of function evaluations but we want the bots to find the
target within a reasonable time period.

3.2 Simulation results
To evaluate the effectiveness of the pePSO, we made several simulation runs. An effective
“hit” occurred when one of the bots found the global peak within 15 minutes of simulation
time (5400 function iterations). We used the 5 different target points and did 200 test cases
for each target point for a total of 1000 runs for each test function. In each test case, the
initial start locations of the bots were different. We evaluated the overall effectiveness of the
algorithm (i.e., how many times it found the “target”) and compared the pePSO to the
standard PSO. In tables 2, 3 and 4 we compare the pePSO to the standard PSO with the
number of particles set to 3. We modified the standard PSO to calculate the percent found
(number of hits) based on proximity to the target location rather than on the function value
so that it was consistent with the pePSO. The tables report the percentage of targets found.
The results are shown for each of the three test functions as well as the total for all five target
points.
For all three test functions, the pePSO performed much better than the PSO using same
number of particles.

 Target point
1

Target point
2

Target point
3

Target point
4

Target
point 5

Tot
al

PSO 100 38.5 51 98 90.5 75.6
pePSO 99.5 99.5 99.5 99.5 100 99.6

Table 2. Parabolic Function, Results show the percent of targets found (out of 200 searches)
for each of the five target points and also the overall results.

 Target
point 1

Target
point 2

Target
point 3

Target
point 4

Target
point 5

Total

PSO 31 33.5 48 26 19 31.5
pePSO 97.5 96.5 65.5 99.5 92 90.2

Table 3. Rastrigin Function. Results show the percent of targets foune (out of 200 searches)
for each of the five target points and also the overall results.

 Target
point 1

Target
point 2

Target
point 3

Target
point 4

Target
point 5

Total

PSO 75 53 29.5 51.5 45 50.8
pePSO 86.5 92 55.5 88.5 92 82.9

Table 4. Rosenbrock Function. Results show the percent of targets foune (out of 200
searches) for each of the five target points and also the overall results.

The results in Tables 2-4 show that none of the algorithms found the target location 100% of
the time, even with a relatively easy problem like the parabolic function. There are a
number of reasons for the missed detections. First, we declared a failed search after
relatively few function evaluations (relative compared to other researchers’ results); we
limited both the standard PSO and the pePSO to 5400 function evaluations. Second, we are
not using very many particles/bots. Third, we have placed some of the target locations at
positions near the edge of the search space which makes it somewhat more difficult for the
PSO to find them.

3.3 Hardware test conditions
To investigate the effectiveness of the pePSO algorithm, we did several hardware
experiments. In the experiments, a diffuse light source was placed near the ceiling of a dark
room and pointed downward. Bots with light sensors were placed at various starting
positions about 2 m apart to see (a) how often and (b) how quickly they could find the
brightest spot of light in the room.
The layout of the test area is shown in Figure 3. The hatched boxes in the middle represent the
obstacles that we placed in the search space for the second half of the testing. The highest
concentration of light is immediately to the left of the vertical obstacle. Since we are using a
diffuse light source, the global best is actually a rectangle approximately .25 m by .3 m.

Swarm Robotics, From Biology to Robotics8

Fig. 3. Graphical representation of test area. Dimensions shown are in meters. Figure shows
two obstacles and starred area is location of peak light intensity.

To make the pePSO work in a robotic swarm, we had to make several adjustments. First,
the bots determine their position by triangulating from three cricket motes set up as
beacons. To correct for any missed packets, the bots are programmed to move to the next
position and then wait for two consecutive “clean” measurements (distance measurements
within 2 cm of each other) from all three beacons. This wait leads to relatively long search
times.
A second adjustment had to be made because of mechanical limitations in each bot. Since
the bots steer with the front two wheels, the bots move in arcs rather than straight lines (see
Figure 4). Each bot moves toward the desired position in the search space but upon arrival
at the destination point, the orientation of the bot, as given by the direction of the wheels, is
usually skewed relative to the movement. To compensate, we updated the bot’s orientation
angle at each iteration based on the bot’s current position and its previous position. This
eliminates the buildup of orientation errors that occur when a strict dead reckoning system
for orientation is used.

X (cm)

Y
 (c

m
)

Actual Bot
Path
Calculated Bot
Path

Bot orientation
error

End
position

Start
position

Fig. 4. Illustration of bot orientation mismatch.

A third adjustment was required because of the size of the bots. Unlike a simulation-only
PSO, the hardware bots can get “stuck” at an obstacle or collide with another bot (particle).
Once a bot got stuck or collided, we programmed the bot to back up and turn right. This
allows the bot to move around long obstacles, such as a wall, even though it may require
more than one cycle of backing up and turning to avoid.

3.4 Hardware results
During the hardware experiments, we programmed each bot in the swarm with identical
programs. (The only difference is that each bot has a different identification number.) The
PSO parameters used were c1 = 2, c2 = 2, and wi = 1.0. We tried using wi = 0.8 but it slowed
the bots down considerably and led to many failed searches. Each bot was programmed to
move in the desired direction for approximately 0.5 sec. The bot would then make a
measurement, determine its new position, calculate its desired movement direction based
on the PSO update, orient its wheels to that direction, if possible, and then move for 0.5 sec.
The search was ended when there had been 20 iterations of the algorithm with no new local
best discovered. We made some test runs using a stop condition with 10 iterations with no
new lbest but we determined that 10 was insufficient.
Figure 5 shows the path traced out by 1 bot during a search sequence. The x and y axes are
to scale and the axes are in cm. The asterisks (*) marks in the figures represent positions
where a new local best was found. The rectangular box is the peak area of the search space.
The bot starts in lower right corner. It moves up (north), finds new lbests and continues
upward. When it starts to move away from the peak, it circles clockwise and then begins
moving to the left (westward). When the light intensity measurements begin to taper off
again, the bot circles counterclockwise back toward its previous best. The circle behavior is
because the bot is limited in its turning radius – it can not make a sharp turn. Thus, it must
move toward the global best in a roundabout fashion. Eventually, it settles on to the peak
light value.

20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

x (cm)

y
(c

m
)

Bot start position

Fig. 5. Path in search space with no obstacles for 1 bot. Asterisks show positions where lbests
were recorded.

The PSO algorithm was tested using swarm sizes of 1, 2 and 3 bots. (The 1-bot swarm was
merely for baseline comparison.) Ten runs were made for each of the three cases. We
tracked how many times the bots found the brightest spot and how long it took for the bots

Bio-inspired search strategies for robot swarms 9

Fig. 3. Graphical representation of test area. Dimensions shown are in meters. Figure shows
two obstacles and starred area is location of peak light intensity.

To make the pePSO work in a robotic swarm, we had to make several adjustments. First,
the bots determine their position by triangulating from three cricket motes set up as
beacons. To correct for any missed packets, the bots are programmed to move to the next
position and then wait for two consecutive “clean” measurements (distance measurements
within 2 cm of each other) from all three beacons. This wait leads to relatively long search
times.
A second adjustment had to be made because of mechanical limitations in each bot. Since
the bots steer with the front two wheels, the bots move in arcs rather than straight lines (see
Figure 4). Each bot moves toward the desired position in the search space but upon arrival
at the destination point, the orientation of the bot, as given by the direction of the wheels, is
usually skewed relative to the movement. To compensate, we updated the bot’s orientation
angle at each iteration based on the bot’s current position and its previous position. This
eliminates the buildup of orientation errors that occur when a strict dead reckoning system
for orientation is used.

X (cm)

Y
 (c

m
)

Actual Bot
Path
Calculated Bot
Path

Bot orientation
error

End
position

Start
position

Fig. 4. Illustration of bot orientation mismatch.

A third adjustment was required because of the size of the bots. Unlike a simulation-only
PSO, the hardware bots can get “stuck” at an obstacle or collide with another bot (particle).
Once a bot got stuck or collided, we programmed the bot to back up and turn right. This
allows the bot to move around long obstacles, such as a wall, even though it may require
more than one cycle of backing up and turning to avoid.

3.4 Hardware results
During the hardware experiments, we programmed each bot in the swarm with identical
programs. (The only difference is that each bot has a different identification number.) The
PSO parameters used were c1 = 2, c2 = 2, and wi = 1.0. We tried using wi = 0.8 but it slowed
the bots down considerably and led to many failed searches. Each bot was programmed to
move in the desired direction for approximately 0.5 sec. The bot would then make a
measurement, determine its new position, calculate its desired movement direction based
on the PSO update, orient its wheels to that direction, if possible, and then move for 0.5 sec.
The search was ended when there had been 20 iterations of the algorithm with no new local
best discovered. We made some test runs using a stop condition with 10 iterations with no
new lbest but we determined that 10 was insufficient.
Figure 5 shows the path traced out by 1 bot during a search sequence. The x and y axes are
to scale and the axes are in cm. The asterisks (*) marks in the figures represent positions
where a new local best was found. The rectangular box is the peak area of the search space.
The bot starts in lower right corner. It moves up (north), finds new lbests and continues
upward. When it starts to move away from the peak, it circles clockwise and then begins
moving to the left (westward). When the light intensity measurements begin to taper off
again, the bot circles counterclockwise back toward its previous best. The circle behavior is
because the bot is limited in its turning radius – it can not make a sharp turn. Thus, it must
move toward the global best in a roundabout fashion. Eventually, it settles on to the peak
light value.

20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

x (cm)

y
(c

m
)

Bot start position

Fig. 5. Path in search space with no obstacles for 1 bot. Asterisks show positions where lbests
were recorded.

The PSO algorithm was tested using swarm sizes of 1, 2 and 3 bots. (The 1-bot swarm was
merely for baseline comparison.) Ten runs were made for each of the three cases. We
tracked how many times the bots found the brightest spot and how long it took for the bots

Swarm Robotics, From Biology to Robotics10

to locate the peak. If twenty iterations of the algorithm passed with no new global best, then
we declare the search is over.
The quantitative results are shown in Tables 5 and 6. The results are for two different search
spaces: one with no obstacles and one with obstacles. The table shows the number of bots in
the swarm, the number of successful (completed) runs, the median search time for all
searches, the average search time for just the successful searches, the standard deviation of
the successful search times and the 90% confidence interval for the average time. The
confidence interval is based on t-statistics using the successful searches as the degrees of
freedom.

Runs without obstacles.
Test
condition

Complete
runs (out of

10)

Median time
(sec)

Average
(sec)

Standard
deviation (sec)

Confidence
Interval (90%)

pePSO (1
bot)

6 118.5 180.2 101 ± 83.1

pePSO (2
bots)

10 177 176.1 68.9 ± 39.9

pePSO (3
bots)

10 133.5 109.6 55.0 ± 31.9

Phototaxis
(1 bot)

9 280 273.8 45.1 ± 28.0

3 bot (no
commun)

10 351.5 362.7 98.7 ± 57.2

Table 5. Results from using PSO to program a suite of bots with sensor and position
corrections. No obstacles in the search space

Test
condition

Complete
runs (out

of 10)

Median time
(sec)

Average
(sec)

Standard
deviation

(sec)

Confidence
Interval (90%)

pePSO (1
bot)

8 268 250.2 108.6 ± 71.4

pePSO (2
bots)

10 178 181.7 76.1 ± 44.1

pePSO (3
bots)

10 108.5 125.8 65.2 ± 37.8

3 bot (no
commun)

9 290 294.1 111.3 ± 69.0

Table 6. Results from pePSO in a search space with obstacles

Table 5 also shows the results from searches using a phototaxis approach and using three
bots without any communication among the bots. These experiments provide a comparison
for the effectiveness and search times for the pePSO. For the phototaxis experiments, we
used a cylinder to make a directional light sensor on one of the bots. The bot then took light
intensity measurements as it made a 360 degree loop. (The loop had a radius of 0.25 m.) The
bot then moved in the direction of the greatest light reading. Our test results show that the
multi-bot pePSO is faster and more effective than the phototaxis approach.

To compare the effectiveness of the multi-bot pePSO, we did a 3 bot search with no
communication among the bots. Essentially, each bot moved toward bright regions of the
room based on the PSO update equation without the lbest term. If a bot received a higher
light reading than ever before, then it continued moving in that direction; thus, it is a
pseudo-gradient method. The results in Table 6 show that the 3-bot pseudo-gradient
method was effective (19 out of 20 successful runs) but it was much slower than the 3-bot
pePSO. The 3-bot pePSO search is over 55% faster than the pseudo-gradient based 3-bot
search both with obstacles and without obstacles.
Increasing the number of bots does two things. It leads to more successful searches and
reduces the time to find the peak/best value. We see that even with the obstacles in the
search space, the swarm is still able to find the “target” or peak light intensity every time for
a multi-bot search. In general, the searches take longer when there are obstacles in the
search space but the search is still successful. The times should be used for comparison
purposes and not necessarily as an absolute reference. As mentioned earlier, sketchy
communications with the beacons forced the bots to wait for two consecutive good data
points at each iteration. This waiting time greatly increased the search time.
To overcome the weak signal from one of the beacons, we modified the position algorithm
to allow the bot to calculate its position with distance data from only two beacons. The bot
initially tried to get two consecutive good measurements from all three beacons. If after
seven seconds there was still not accurate distance information, then the bot would use the
distance measurements from two beacons to calculate its (x,y) position.
During our initial experiments, we noticed that the light sensors on the bots were
mismatched. That is, different bots would read different values for the same light level.
This imbalance led to some erroneous values for the search times. Specifically, if the bot
with the lowest light readings found the peak value first, then other bots would circle
toward that point. When another bot (with a light sensor that recorded higher light values)
moved to the same location, it would record a higher light value and the algorithm would
think a “new” target had been found. To correct for the different sensor readings, we used
linear splines for each individual sensor to adjust and match the light sensor outputs of the
three bots.

4. Trophallaxis and robots

4.1 Background
In our trophallaxis-based algorithm, the bots (or, more generally, particles) do not actually
exchange information but instead make sensor measurements when two or more
bots/particles are “in contact”. The bots remain stationary for a certain time that is
proportional to the measurement value. Bots thus cluster in areas of the search space that
have high fitness/measurement values. Each bot is independent (i.e., not reliant on neighbor
bot measurements) but must have contact with the other bots to find the peaks.
This new trophallaxis-based search algorithm has several advantages over other swarm-
based search techniques. First, no bot-bot (particle-particle) communication is required.
Thus, there is no concern with communication radius, protocol, or bandwidth. Unlike classic
PSO-based techniques, the bots do not have to be arranged in topologies or communicate
personal or global best information to any neighbors. The only communication that may be

Bio-inspired search strategies for robot swarms 11

to locate the peak. If twenty iterations of the algorithm passed with no new global best, then
we declare the search is over.
The quantitative results are shown in Tables 5 and 6. The results are for two different search
spaces: one with no obstacles and one with obstacles. The table shows the number of bots in
the swarm, the number of successful (completed) runs, the median search time for all
searches, the average search time for just the successful searches, the standard deviation of
the successful search times and the 90% confidence interval for the average time. The
confidence interval is based on t-statistics using the successful searches as the degrees of
freedom.

Runs without obstacles.
Test
condition

Complete
runs (out of

10)

Median time
(sec)

Average
(sec)

Standard
deviation (sec)

Confidence
Interval (90%)

pePSO (1
bot)

6 118.5 180.2 101 ± 83.1

pePSO (2
bots)

10 177 176.1 68.9 ± 39.9

pePSO (3
bots)

10 133.5 109.6 55.0 ± 31.9

Phototaxis
(1 bot)

9 280 273.8 45.1 ± 28.0

3 bot (no
commun)

10 351.5 362.7 98.7 ± 57.2

Table 5. Results from using PSO to program a suite of bots with sensor and position
corrections. No obstacles in the search space

Test
condition

Complete
runs (out

of 10)

Median time
(sec)

Average
(sec)

Standard
deviation

(sec)

Confidence
Interval (90%)

pePSO (1
bot)

8 268 250.2 108.6 ± 71.4

pePSO (2
bots)

10 178 181.7 76.1 ± 44.1

pePSO (3
bots)

10 108.5 125.8 65.2 ± 37.8

3 bot (no
commun)

9 290 294.1 111.3 ± 69.0

Table 6. Results from pePSO in a search space with obstacles

Table 5 also shows the results from searches using a phototaxis approach and using three
bots without any communication among the bots. These experiments provide a comparison
for the effectiveness and search times for the pePSO. For the phototaxis experiments, we
used a cylinder to make a directional light sensor on one of the bots. The bot then took light
intensity measurements as it made a 360 degree loop. (The loop had a radius of 0.25 m.) The
bot then moved in the direction of the greatest light reading. Our test results show that the
multi-bot pePSO is faster and more effective than the phototaxis approach.

To compare the effectiveness of the multi-bot pePSO, we did a 3 bot search with no
communication among the bots. Essentially, each bot moved toward bright regions of the
room based on the PSO update equation without the lbest term. If a bot received a higher
light reading than ever before, then it continued moving in that direction; thus, it is a
pseudo-gradient method. The results in Table 6 show that the 3-bot pseudo-gradient
method was effective (19 out of 20 successful runs) but it was much slower than the 3-bot
pePSO. The 3-bot pePSO search is over 55% faster than the pseudo-gradient based 3-bot
search both with obstacles and without obstacles.
Increasing the number of bots does two things. It leads to more successful searches and
reduces the time to find the peak/best value. We see that even with the obstacles in the
search space, the swarm is still able to find the “target” or peak light intensity every time for
a multi-bot search. In general, the searches take longer when there are obstacles in the
search space but the search is still successful. The times should be used for comparison
purposes and not necessarily as an absolute reference. As mentioned earlier, sketchy
communications with the beacons forced the bots to wait for two consecutive good data
points at each iteration. This waiting time greatly increased the search time.
To overcome the weak signal from one of the beacons, we modified the position algorithm
to allow the bot to calculate its position with distance data from only two beacons. The bot
initially tried to get two consecutive good measurements from all three beacons. If after
seven seconds there was still not accurate distance information, then the bot would use the
distance measurements from two beacons to calculate its (x,y) position.
During our initial experiments, we noticed that the light sensors on the bots were
mismatched. That is, different bots would read different values for the same light level.
This imbalance led to some erroneous values for the search times. Specifically, if the bot
with the lowest light readings found the peak value first, then other bots would circle
toward that point. When another bot (with a light sensor that recorded higher light values)
moved to the same location, it would record a higher light value and the algorithm would
think a “new” target had been found. To correct for the different sensor readings, we used
linear splines for each individual sensor to adjust and match the light sensor outputs of the
three bots.

4. Trophallaxis and robots

4.1 Background
In our trophallaxis-based algorithm, the bots (or, more generally, particles) do not actually
exchange information but instead make sensor measurements when two or more
bots/particles are “in contact”. The bots remain stationary for a certain time that is
proportional to the measurement value. Bots thus cluster in areas of the search space that
have high fitness/measurement values. Each bot is independent (i.e., not reliant on neighbor
bot measurements) but must have contact with the other bots to find the peaks.
This new trophallaxis-based search algorithm has several advantages over other swarm-
based search techniques. First, no bot-bot (particle-particle) communication is required.
Thus, there is no concern with communication radius, protocol, or bandwidth. Unlike classic
PSO-based techniques, the bots do not have to be arranged in topologies or communicate
personal or global best information to any neighbors. The only communication that may be

Swarm Robotics, From Biology to Robotics12

required is signaling between bots to differentiate collisions between bots and collisions
with obstacles.
Second, the bots do not have to know their position. If position information is available,
from beacons or some other source, then position information can be communicated at the
end of the search. But during the search, the bot/particle moves randomly except when it
stops, takes a measurement, and waits. At the end of the search, the cluster locations can be
determined from a remote camera, special-purpose robot, or human canvassing.
Third, no on-board processing or memory is required – the bot does not even have to do the
relatively simple PSO update equations. The bot/particle moves at random, takes a
measurement and does a multiplication. It is so simple that a microcontroller may not be
required, only some simple digital logic hardware.
The Trophallactic Cluster Algorithm (TCA) has four basic steps:
Step 1: Bots start randomly throughout the search space and then move at random through
the search space.
Step 2: If a bot intersects or collides with another bot, then it stops.
Step 3: After stopping, the bot measures the “fitness” or function value at that point in
space. It then waits at that point for a prescribed time based on the measurement. The
higher the measurement value, then the longer the wait time.
Step 4: When done, determine the locations of the clusters of bots. (We assume that this step
is performed by an agent or agents that are separate from the swarm.)
Step 1 is similar to the first step in the standard Particle Swarm Optimization (PSO) algorithm.
For a software only optimization scheme, it is straightforward to randomly initialize the
particles within the search boundaries. For a hardware scheme, a dispersion algorithm
(Siebold & Hereford 2008; Spears et al., 2006) can be used to randomly place the bots.
For random movement, we pick a direction and then have the bots move in a straight line in
that direction until they encounter an obstacle, boundary or other bot. Thus, there is no path
adjustment or Brownian motion type movement once the (random) initial direction is set.
There is a maximum velocity at which the bots move throughout the search space. We
experimented briefly with different maximum velocities to see its affect on overall results
but we usually set it based on the expected maximum velocity of our hardware bots.
In step 2, we detect collision by determining whether bots are within a certain distance of
each other. In software, this is done after each time step. In hardware, it can be done using
infrared sensors on each bot.
In a hardware implementation of the TCA, we would need to distinguish between collisions
with obstacles and collisions with other bots. Obstacles and walls just cause the bot/particle
to reorient and move in a new direction. They do not lead to a stop/measure/wait
sequence. So once a collision is detected, the bot would have to determine if the collision is
with another bot or with an obstacle. One way to do this is to have the bots signal with
LEDS (ala trophallaxis where only neighbors next to each other can exchange info). In this
way, each bot will know it has encountered another bot.
Once a bot is stopped (as a result of a collision with another bot), then it measures the value
of the function at that location. (In hardware, the bot would take a sensor reading.) Since the
bots are nearly co-located, the function value will be nearly the same for both bots. The wait
time is a multiple of the function value so the bot(s) will wait longer in areas of high fitness
relative to areas with low function values. Other bots may also “collide” with the stopped
and waiting bots but that will not reset the wait times for the stopped bots. For the results in

this paper the wait time was exponentially related to the measurement value; we
experimented with linear wait times as well.
We did step 4 (determine the clusters) when the search is “done”. In general, the bots begin
to collide/stop/wait at the beginning. Thus, the bots tend to cluster soon after the search
begins so the search can be stopped at any time to observe the location(s) of the clusters. In
2D, the clusters tend to become more pronounced as the iterations increase so waiting a
longer time can make the position(s) of the peak(s) more obvious.

4.2 Related work
The TCA is based on the work of Thomas Schmickl and Karl Crailsheim (Schmickl &
Crailsheim 2006; Schmickl & Crailsheim 2008) who developed the concept based on the
trophallactic behavior of honey bees. Schmickl and Crailsheim use the trophallactic concept
to have a swarm of bots move (simulated) dirt from a source point to a dump point. The
bots can upload “nectar” from the source point, where the amount of nectar for each bot is
stored in an internal variable. As the robots move, the amount of stored nectar decreases, so
the higher the nectar level, then the closer to the source. Each robot also queries the nectar
level of the robots in the local neighborhood and can use this information to navigate uphill
in the gradient. There is a also a dump area where the loaded robots aggregate and drop the
“dirt” particles. The swarm had to navigate between the source and the dump and achieved
this by establishing two distinct gradients in parallel.
Their preliminary results showed a problem where the bots tended to aggregate near the
dump and the source. When that happened, the bridge or gradient information between the
source and the dump was lost. To prevent the aggregation, they prevented a percentage of
their robots from moving uphill and just performed a random walk with obstacle avoidance.
Even though the work of Schmickl and Crailsheim is significant, they show no published
results where they apply the trophallactic concept to strictly search/optimization type
problems. Nor do they show results when there is more than one peak (or source point) in
the search space. They also require bot-bot communications to form the pseudo-gradient
that the loaded (or empty) bots follow, while our TCA approach does not require adjacent
particles/bots to exchange nectar levels (or any other measured values).
In (Ngo & Schioler, 2008), Ngo and Schioler model a group of autonomous mobile robots
with the possibility of self-refueling. Inspired by the natural concept of trophallaxis, they
investigate a system of multiple robots that is capable of energy sharing to sustain robot life.
Energy (via the exchange of rechargeable batteries) is transferred by direct contact with
other robots and fixed docking stations.
In this research, we are applying the concept of trophallaxis to solve a completely different
type of problem than Ngo and Schioler, though some of their results may be applicable if we
expand our research to include energy use by the robots.

5. Trophallaxis search results

5.1 Test conditions
We tested the TCA algorithm on three functions: two 1D and one 2D. The 1D functions are
denoted F3 and F4 and were used by Parrott and Li (Parrott and Li, 2006) for testing PSO-
based algorithms that find multiple peaks in the search space. The equations for F3 and F4
are given by

Bio-inspired search strategies for robot swarms 13

required is signaling between bots to differentiate collisions between bots and collisions
with obstacles.
Second, the bots do not have to know their position. If position information is available,
from beacons or some other source, then position information can be communicated at the
end of the search. But during the search, the bot/particle moves randomly except when it
stops, takes a measurement, and waits. At the end of the search, the cluster locations can be
determined from a remote camera, special-purpose robot, or human canvassing.
Third, no on-board processing or memory is required – the bot does not even have to do the
relatively simple PSO update equations. The bot/particle moves at random, takes a
measurement and does a multiplication. It is so simple that a microcontroller may not be
required, only some simple digital logic hardware.
The Trophallactic Cluster Algorithm (TCA) has four basic steps:
Step 1: Bots start randomly throughout the search space and then move at random through
the search space.
Step 2: If a bot intersects or collides with another bot, then it stops.
Step 3: After stopping, the bot measures the “fitness” or function value at that point in
space. It then waits at that point for a prescribed time based on the measurement. The
higher the measurement value, then the longer the wait time.
Step 4: When done, determine the locations of the clusters of bots. (We assume that this step
is performed by an agent or agents that are separate from the swarm.)
Step 1 is similar to the first step in the standard Particle Swarm Optimization (PSO) algorithm.
For a software only optimization scheme, it is straightforward to randomly initialize the
particles within the search boundaries. For a hardware scheme, a dispersion algorithm
(Siebold & Hereford 2008; Spears et al., 2006) can be used to randomly place the bots.
For random movement, we pick a direction and then have the bots move in a straight line in
that direction until they encounter an obstacle, boundary or other bot. Thus, there is no path
adjustment or Brownian motion type movement once the (random) initial direction is set.
There is a maximum velocity at which the bots move throughout the search space. We
experimented briefly with different maximum velocities to see its affect on overall results
but we usually set it based on the expected maximum velocity of our hardware bots.
In step 2, we detect collision by determining whether bots are within a certain distance of
each other. In software, this is done after each time step. In hardware, it can be done using
infrared sensors on each bot.
In a hardware implementation of the TCA, we would need to distinguish between collisions
with obstacles and collisions with other bots. Obstacles and walls just cause the bot/particle
to reorient and move in a new direction. They do not lead to a stop/measure/wait
sequence. So once a collision is detected, the bot would have to determine if the collision is
with another bot or with an obstacle. One way to do this is to have the bots signal with
LEDS (ala trophallaxis where only neighbors next to each other can exchange info). In this
way, each bot will know it has encountered another bot.
Once a bot is stopped (as a result of a collision with another bot), then it measures the value
of the function at that location. (In hardware, the bot would take a sensor reading.) Since the
bots are nearly co-located, the function value will be nearly the same for both bots. The wait
time is a multiple of the function value so the bot(s) will wait longer in areas of high fitness
relative to areas with low function values. Other bots may also “collide” with the stopped
and waiting bots but that will not reset the wait times for the stopped bots. For the results in

this paper the wait time was exponentially related to the measurement value; we
experimented with linear wait times as well.
We did step 4 (determine the clusters) when the search is “done”. In general, the bots begin
to collide/stop/wait at the beginning. Thus, the bots tend to cluster soon after the search
begins so the search can be stopped at any time to observe the location(s) of the clusters. In
2D, the clusters tend to become more pronounced as the iterations increase so waiting a
longer time can make the position(s) of the peak(s) more obvious.

4.2 Related work
The TCA is based on the work of Thomas Schmickl and Karl Crailsheim (Schmickl &
Crailsheim 2006; Schmickl & Crailsheim 2008) who developed the concept based on the
trophallactic behavior of honey bees. Schmickl and Crailsheim use the trophallactic concept
to have a swarm of bots move (simulated) dirt from a source point to a dump point. The
bots can upload “nectar” from the source point, where the amount of nectar for each bot is
stored in an internal variable. As the robots move, the amount of stored nectar decreases, so
the higher the nectar level, then the closer to the source. Each robot also queries the nectar
level of the robots in the local neighborhood and can use this information to navigate uphill
in the gradient. There is a also a dump area where the loaded robots aggregate and drop the
“dirt” particles. The swarm had to navigate between the source and the dump and achieved
this by establishing two distinct gradients in parallel.
Their preliminary results showed a problem where the bots tended to aggregate near the
dump and the source. When that happened, the bridge or gradient information between the
source and the dump was lost. To prevent the aggregation, they prevented a percentage of
their robots from moving uphill and just performed a random walk with obstacle avoidance.
Even though the work of Schmickl and Crailsheim is significant, they show no published
results where they apply the trophallactic concept to strictly search/optimization type
problems. Nor do they show results when there is more than one peak (or source point) in
the search space. They also require bot-bot communications to form the pseudo-gradient
that the loaded (or empty) bots follow, while our TCA approach does not require adjacent
particles/bots to exchange nectar levels (or any other measured values).
In (Ngo & Schioler, 2008), Ngo and Schioler model a group of autonomous mobile robots
with the possibility of self-refueling. Inspired by the natural concept of trophallaxis, they
investigate a system of multiple robots that is capable of energy sharing to sustain robot life.
Energy (via the exchange of rechargeable batteries) is transferred by direct contact with
other robots and fixed docking stations.
In this research, we are applying the concept of trophallaxis to solve a completely different
type of problem than Ngo and Schioler, though some of their results may be applicable if we
expand our research to include energy use by the robots.

5. Trophallaxis search results

5.1 Test conditions
We tested the TCA algorithm on three functions: two 1D and one 2D. The 1D functions are
denoted F3 and F4 and were used by Parrott and Li (Parrott and Li, 2006) for testing PSO-
based algorithms that find multiple peaks in the search space. The equations for F3 and F4
are given by

Swarm Robotics, From Biology to Robotics14

))05.0(5(sin)(3 4/36  xxF  (6)

))05.0(5(sin))
854.

08.0)(2log(2exp()(4 4/362 


 xxxF  (7)

Plots for the function F3 and F4 are shown in figure 6. Each 1D test function is defined over
the scale of 0 ≤ x ≤ 1. F3 has five equal-height peaks (global optima) that are unevenly
spaced in the search space. F4 also has five unevenly spaced peaks but only one is a global
optimum while the other four peaks are local optima. Our goal is to find all five peaks; that
is, the global optimum plus the local optima. The peak locations are given in Table 7.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Fig. 6. 1D test function with equal peaks, F3, and with unequal peaks, F4

Peak # 1 2 3 4 5
X locations .0797 .2465 .4505 .6815 .9340

Table 7. Peak locations for test functions F3 and F4

The 2D function is a slight variation of the standard Rastrigin function. The equation for the
Rastrigin is given in equation 4 with the range on x and y is -5.12 to 5.12. The Rastrigin is

highly multimodal (see figure 2) and has one global minimum. For the TCA simulations,
we modified the Rastrigin so that it has a peak of 1 at (.35, .35) instead of a minimum at the
origin. We also scaled the function slightly so that there are nine peaks (1 global, 8 local)
within the [-5.12, 5.12] range. The modified Rastrigin function is shown in figure 7.

Fig. 7. Plot of modified Rastrigin function scaled so that it has 9 peaks in [-5.12,5.12] range
and peak value is equal to 1.

We evaluated the effectiveness of the TCA algorithm using two different metrics. The first
metric is the total percentage of peaks found (found rate). Since each function has multiple
peaks (both global and local) we totaled the number of actual peaks that the swarm found
divided by the total number of peaks (see equation 8). Note that “peaks found” refers to
only those bot clusters that are within ± .04 (1D) or a radius of .4 (2D) of the actual peak
location.
Found rate = (peaks found)/(total number of peaks in search space) (8)
The second metric is related to the success rate from Parrott and Li:
Success rate = (Runs where more than half of total peaks found)/(total number of runs) (9)
The success rate gives an indication of how many of the runs were successful. We designate a
successful run as one where a majority of the peaks (more than half) in the search space are
found. This definition is based on the robot search idea where the goal is for the robots to
quickly cluster near the target points. We note that this is a slightly different definition for
success rate than Parrott and Li; their success rate is based on the closest particle and finding
all of the peaks in the search space.
The locations of the bot clusters were determined using the K-means clustering algorithm.
The K-means algorithm minimizes the sum, over all clusters, of the point-to-cluster centroid
distances. We then compared the cluster centroid to the actual peak location to determine if
the peak was found or not. For the 1D functions, we used a tolerance of ± 0.04 between the
cluster centroid and the actual peak and for the 2D functions we used a radius of 0.4.
We considered two clustering approaches; the first one uses all of the bots when
determining the cluster centroids. The second approach uses only the final position of the

Bio-inspired search strategies for robot swarms 15

))05.0(5(sin)(3 4/36  xxF  (6)

))05.0(5(sin))
854.

08.0)(2log(2exp()(4 4/362 


 xxxF  (7)

Plots for the function F3 and F4 are shown in figure 6. Each 1D test function is defined over
the scale of 0 ≤ x ≤ 1. F3 has five equal-height peaks (global optima) that are unevenly
spaced in the search space. F4 also has five unevenly spaced peaks but only one is a global
optimum while the other four peaks are local optima. Our goal is to find all five peaks; that
is, the global optimum plus the local optima. The peak locations are given in Table 7.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Fig. 6. 1D test function with equal peaks, F3, and with unequal peaks, F4

Peak # 1 2 3 4 5
X locations .0797 .2465 .4505 .6815 .9340

Table 7. Peak locations for test functions F3 and F4

The 2D function is a slight variation of the standard Rastrigin function. The equation for the
Rastrigin is given in equation 4 with the range on x and y is -5.12 to 5.12. The Rastrigin is

highly multimodal (see figure 2) and has one global minimum. For the TCA simulations,
we modified the Rastrigin so that it has a peak of 1 at (.35, .35) instead of a minimum at the
origin. We also scaled the function slightly so that there are nine peaks (1 global, 8 local)
within the [-5.12, 5.12] range. The modified Rastrigin function is shown in figure 7.

Fig. 7. Plot of modified Rastrigin function scaled so that it has 9 peaks in [-5.12,5.12] range
and peak value is equal to 1.

We evaluated the effectiveness of the TCA algorithm using two different metrics. The first
metric is the total percentage of peaks found (found rate). Since each function has multiple
peaks (both global and local) we totaled the number of actual peaks that the swarm found
divided by the total number of peaks (see equation 8). Note that “peaks found” refers to
only those bot clusters that are within ± .04 (1D) or a radius of .4 (2D) of the actual peak
location.
Found rate = (peaks found)/(total number of peaks in search space) (8)
The second metric is related to the success rate from Parrott and Li:
Success rate = (Runs where more than half of total peaks found)/(total number of runs) (9)
The success rate gives an indication of how many of the runs were successful. We designate a
successful run as one where a majority of the peaks (more than half) in the search space are
found. This definition is based on the robot search idea where the goal is for the robots to
quickly cluster near the target points. We note that this is a slightly different definition for
success rate than Parrott and Li; their success rate is based on the closest particle and finding
all of the peaks in the search space.
The locations of the bot clusters were determined using the K-means clustering algorithm.
The K-means algorithm minimizes the sum, over all clusters, of the point-to-cluster centroid
distances. We then compared the cluster centroid to the actual peak location to determine if
the peak was found or not. For the 1D functions, we used a tolerance of ± 0.04 between the
cluster centroid and the actual peak and for the 2D functions we used a radius of 0.4.
We considered two clustering approaches; the first one uses all of the bots when
determining the cluster centroids. The second approach uses only the final position of the

Swarm Robotics, From Biology to Robotics16

bots that are stopped (that is, in a collision) when determining clusters. We refer to the
second approach as “cluster reduction”, since it reduces the number of bots that are
considered.

5.2 Trophallactic Cluster Algorithm 1D results
Qualitative results from computer simulations of the TCA for the two 1D functions F3 and
F4 are shown in Figure 8. The top plot in the figure shows the original function; the middle
plot shows the final bot positions (after 400 iterations) with each bot position represented by
a star (*). The bottom plot is a normalized histogram; the histogram is made by tracking the
position of each bot after each time interval. The figure reveals that the bots do cluster
around the peaks in the function and thus give evidence that the TCA will reliably find
multiple peaks.
The histogram plots reveal some interesting information. For both F3 and F4, there are
significant peaks in the histogram at the same locations as the function peaks, providing
evidence that the bots spend a majority of time near the peaks and it is not just at the end of
the simulation that the bots cluster. Also, for F3 the histogram peaks have approximately the
same amplitude (peak amplitudes range from 0.7 to 1.0). For F4, however, the histogram
peaks diminish in amplitude in almost direct proportion to the function peaks (peak
amplitudes diminish from 1.0 down to 0.25). This implies that the bots are spending more
time in the vicinity of the larger peaks. The bots are thus “attracted” to stronger signals, as
expected.

Fig. 8. Qualitative results for function F3 (left) and function F4 (right). Final bot locations are
shown in the middle plot and histograms of bot positions are shown in the bottom plot

We performed computer simulations to tailor three of the parameters of TCA algorithm for
1D functions. The three parameters were tmax, the maximum number of iterations for the
simulation, nbots, the number of bots to use, and waitfactor. The waitfactor sets how long each
bot waits based on the measured value after a collision. We tried linear wait functions (wait
time increases linearly with measurement value) but had more success with exponential
wait functions give by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Measurement function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1
Final bot locations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Histogram of bot locations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Measurement function F4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1
Final bot locations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Histogram of bot locations

Bio-inspired search strategies for robot swarms 17

bots that are stopped (that is, in a collision) when determining clusters. We refer to the
second approach as “cluster reduction”, since it reduces the number of bots that are
considered.

5.2 Trophallactic Cluster Algorithm 1D results
Qualitative results from computer simulations of the TCA for the two 1D functions F3 and
F4 are shown in Figure 8. The top plot in the figure shows the original function; the middle
plot shows the final bot positions (after 400 iterations) with each bot position represented by
a star (*). The bottom plot is a normalized histogram; the histogram is made by tracking the
position of each bot after each time interval. The figure reveals that the bots do cluster
around the peaks in the function and thus give evidence that the TCA will reliably find
multiple peaks.
The histogram plots reveal some interesting information. For both F3 and F4, there are
significant peaks in the histogram at the same locations as the function peaks, providing
evidence that the bots spend a majority of time near the peaks and it is not just at the end of
the simulation that the bots cluster. Also, for F3 the histogram peaks have approximately the
same amplitude (peak amplitudes range from 0.7 to 1.0). For F4, however, the histogram
peaks diminish in amplitude in almost direct proportion to the function peaks (peak
amplitudes diminish from 1.0 down to 0.25). This implies that the bots are spending more
time in the vicinity of the larger peaks. The bots are thus “attracted” to stronger signals, as
expected.

Fig. 8. Qualitative results for function F3 (left) and function F4 (right). Final bot locations are
shown in the middle plot and histograms of bot positions are shown in the bottom plot

We performed computer simulations to tailor three of the parameters of TCA algorithm for
1D functions. The three parameters were tmax, the maximum number of iterations for the
simulation, nbots, the number of bots to use, and waitfactor. The waitfactor sets how long each
bot waits based on the measured value after a collision. We tried linear wait functions (wait
time increases linearly with measurement value) but had more success with exponential
wait functions give by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Measurement function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1
Final bot locations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Histogram of bot locations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Measurement function F4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1
Final bot locations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Histogram of bot locations

Swarm Robotics, From Biology to Robotics18

 Wait time = waitfactor * (e(measurement)-1) (11)

For the parameter selection, we varied one parameter at a time and repeated the simulation
100 times. Plots of the average found rate for parameters nbots and waitfactor with no cluster
reduction are shown in Figure 9. The first plot shows the found rate as nbots is varied from
10 to 200 with tmax set to 500 and waitfactor set to 5. The second plot shows the found rate as
waitfactor is varied from 1 to 10 with tmax = 500 and nbots = 80. Similar tests were done with
cluster reduction.

0 20 40 60 80 100 120 140 160 180 200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Bots

F
ou

nd
 R

at
e

1 2 3 4 5 6 7 8 9 10

0.65

0.7

0.75

0.8

0.85

Wait Factor

F
ou

nd
 R

at
e

Fig. 9. Results showing found rate vs nbots (left figure) and waitfactor (right figure) for F3
function

When the peaks were found with no cluster reduction, the found rate versus the parameter
value curve resembled (1-e-x) shape and asymptotically approached a found rate of about
78%. Thus, there was not one precise parameter value but a range of parameter values that
led to the best performance: nbots greater than 80 and waitfactor greater than 3. The tmax
curve was flat – it appears that the bots quickly cluster near the peaks and there is little
change in performance as the tmax is increased. A summary for the parameter selection
process is shown in Table 7.

Parameter w/out cluster reduction w/ cluster reduction
nbots ≥ 80 < 20
tmax ≥ 300 ≥ 100
waitfactor ≥ 3 ≥ 4

Table 7. Best parameter ranges for TCA for 1D functions

When the bot cluster centroids were found with cluster reduction, the response curves for
tmax (flat) and waitfactor (exponential) were similar in shape as without cluster reduction,
though the curve asymptotically approached a found rate of 86%. The response curve for
nbots was different, however. The found rate went up as nbots decreased so fewer bots was
better than more bots, assuming that there at least 5 stopped bots in the search space. It
appears that for a small number of bots, that there was a smaller percentage of bots in the
clusters (say 13 out of 20 instead of 85 out of 90) and those off-clusters bots moved the
cluster centers away from the peaks and led to missed detections.
For the final results we used the parameter values tmax = 500, waitfactor = 4, and nbots = 60.
We used the same parameter values for all test cases: two different functions (F3 and F4)
and with and without cluster reduction. There was a slight dilemma on the choice for nbots
since more bots did better without cluster reduction and fewer bots did better without
cluster reduction so we compromised on 60. We ran the 1D simulations 500 times and the
results are shown in Table 8.

 F3 F4
 Avg #

peaks
found

Std
dev

Found
rate

Success
rate

Avg #
peaks
found

Std
dev

Found
rate

Succes
s rate

w/out
cluster
reduction

4.052 .9311 81.04
%

97.2% 4.016 .9195 80.32% 97.6%

w/ cluster
reduction

4.130 .7761 82.6% 98.2% 4.098 .7782 81.96% 99.0%

Table 8. Final results showing average number of peaks found (out of 5 peaks), found rate
and success rate for 500 iterations

The 1D results show that the TCA was very effective at finding a majority of the peaks in the
2 different functions. The success rate was above 97% and the found rate was above 80%.
These are good results for an algorithm where the individual particles/bots do not have
position information and no bot-bot communication is required.
The results shown in Table 8 are very consistent. The TCA algorithm finds 4 out of the 5
peaks and there is little difference in the results between F3 (peaks of equal height) and F4
(peaks have different heights). There is a slight improvement with cluster reduction, that is,
when only the stopped bots are used to determine the peak locations.

5.3 Trophallactic Cluster Algorithm 2D results
The results of a typical two dimensional search using the TCA are shown in Figure 10. The
first figure shows a plot of the Rastrigin function with the final bot positions superimposed

Bio-inspired search strategies for robot swarms 19

 Wait time = waitfactor * (e(measurement)-1) (11)

For the parameter selection, we varied one parameter at a time and repeated the simulation
100 times. Plots of the average found rate for parameters nbots and waitfactor with no cluster
reduction are shown in Figure 9. The first plot shows the found rate as nbots is varied from
10 to 200 with tmax set to 500 and waitfactor set to 5. The second plot shows the found rate as
waitfactor is varied from 1 to 10 with tmax = 500 and nbots = 80. Similar tests were done with
cluster reduction.

0 20 40 60 80 100 120 140 160 180 200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Bots

F
ou

nd
 R

at
e

1 2 3 4 5 6 7 8 9 10

0.65

0.7

0.75

0.8

0.85

Wait Factor

F
ou

nd
 R

at
e

Fig. 9. Results showing found rate vs nbots (left figure) and waitfactor (right figure) for F3
function

When the peaks were found with no cluster reduction, the found rate versus the parameter
value curve resembled (1-e-x) shape and asymptotically approached a found rate of about
78%. Thus, there was not one precise parameter value but a range of parameter values that
led to the best performance: nbots greater than 80 and waitfactor greater than 3. The tmax
curve was flat – it appears that the bots quickly cluster near the peaks and there is little
change in performance as the tmax is increased. A summary for the parameter selection
process is shown in Table 7.

Parameter w/out cluster reduction w/ cluster reduction
nbots ≥ 80 < 20
tmax ≥ 300 ≥ 100
waitfactor ≥ 3 ≥ 4

Table 7. Best parameter ranges for TCA for 1D functions

When the bot cluster centroids were found with cluster reduction, the response curves for
tmax (flat) and waitfactor (exponential) were similar in shape as without cluster reduction,
though the curve asymptotically approached a found rate of 86%. The response curve for
nbots was different, however. The found rate went up as nbots decreased so fewer bots was
better than more bots, assuming that there at least 5 stopped bots in the search space. It
appears that for a small number of bots, that there was a smaller percentage of bots in the
clusters (say 13 out of 20 instead of 85 out of 90) and those off-clusters bots moved the
cluster centers away from the peaks and led to missed detections.
For the final results we used the parameter values tmax = 500, waitfactor = 4, and nbots = 60.
We used the same parameter values for all test cases: two different functions (F3 and F4)
and with and without cluster reduction. There was a slight dilemma on the choice for nbots
since more bots did better without cluster reduction and fewer bots did better without
cluster reduction so we compromised on 60. We ran the 1D simulations 500 times and the
results are shown in Table 8.

 F3 F4
 Avg #

peaks
found

Std
dev

Found
rate

Success
rate

Avg #
peaks
found

Std
dev

Found
rate

Succes
s rate

w/out
cluster
reduction

4.052 .9311 81.04
%

97.2% 4.016 .9195 80.32% 97.6%

w/ cluster
reduction

4.130 .7761 82.6% 98.2% 4.098 .7782 81.96% 99.0%

Table 8. Final results showing average number of peaks found (out of 5 peaks), found rate
and success rate for 500 iterations

The 1D results show that the TCA was very effective at finding a majority of the peaks in the
2 different functions. The success rate was above 97% and the found rate was above 80%.
These are good results for an algorithm where the individual particles/bots do not have
position information and no bot-bot communication is required.
The results shown in Table 8 are very consistent. The TCA algorithm finds 4 out of the 5
peaks and there is little difference in the results between F3 (peaks of equal height) and F4
(peaks have different heights). There is a slight improvement with cluster reduction, that is,
when only the stopped bots are used to determine the peak locations.

5.3 Trophallactic Cluster Algorithm 2D results
The results of a typical two dimensional search using the TCA are shown in Figure 10. The
first figure shows a plot of the Rastrigin function with the final bot positions superimposed

Swarm Robotics, From Biology to Robotics20

on top of it. The second figure shows the final bot positions and the centroids of nine
clusters found by the K-means clustering algorithm (black stars). Note that six of the cluster
centroids are close to actual peaks in the Rastrigin function, but only one of the centroids
was within the required tolerance and was thus declared a peak (red diamond).
The initial 2D results, like those shown in Figure 10, illustrate the usefulness of cluster
reduction. Figure 11 shows the same final bot positions as in Figure 10, except only the
clusters with three of more bots are kept. That is, small clusters of two bots and any bots not
in a cluster are eliminated. The K-means clustering is performed with this smaller set of bots
and the cluster centroids compared to the peak locations.
After cluster reduction, there are four cluster centroids that are within the tolerance radius
of the peak instead on only one centroid. Thus, ignoring the still-moving bots after the
conclusion of the search clarifies the definition of the clusters of bots. This in turn leads to
more accurate identification of the peaks in the function.
As with the 1D test functions, computer simulations were conducted to refine the three
parameters of tmax, nbots, and waitfactor for the 2D case. The results from these simulations
for nbots and tmax are shown in Figure 12. Each graph shows the found rate as the
parameter was varied; they are the result of averaging 100 simulations for each set of
parameters. For found rate vs nbots graph, tmax was set to 1600 and waitfactor was set to 4.
For the found rate vs tmax graph, nbots= 300 and waitfactor = 4.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 10. Typical TCA search results for the Rastrigin 2D function. Left figure: Rastrigin
function showing final bot position. Right figure: final bot position with cluster centroids -
red diamond denotes found peak and black star denotes cluster centroid.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 11. Analysis of typical TCA search with cluster reduction. Red diamond denotes found
peak. Black star denotes inaccurate peak.

Bio-inspired search strategies for robot swarms 21

on top of it. The second figure shows the final bot positions and the centroids of nine
clusters found by the K-means clustering algorithm (black stars). Note that six of the cluster
centroids are close to actual peaks in the Rastrigin function, but only one of the centroids
was within the required tolerance and was thus declared a peak (red diamond).
The initial 2D results, like those shown in Figure 10, illustrate the usefulness of cluster
reduction. Figure 11 shows the same final bot positions as in Figure 10, except only the
clusters with three of more bots are kept. That is, small clusters of two bots and any bots not
in a cluster are eliminated. The K-means clustering is performed with this smaller set of bots
and the cluster centroids compared to the peak locations.
After cluster reduction, there are four cluster centroids that are within the tolerance radius
of the peak instead on only one centroid. Thus, ignoring the still-moving bots after the
conclusion of the search clarifies the definition of the clusters of bots. This in turn leads to
more accurate identification of the peaks in the function.
As with the 1D test functions, computer simulations were conducted to refine the three
parameters of tmax, nbots, and waitfactor for the 2D case. The results from these simulations
for nbots and tmax are shown in Figure 12. Each graph shows the found rate as the
parameter was varied; they are the result of averaging 100 simulations for each set of
parameters. For found rate vs nbots graph, tmax was set to 1600 and waitfactor was set to 4.
For the found rate vs tmax graph, nbots= 300 and waitfactor = 4.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 10. Typical TCA search results for the Rastrigin 2D function. Left figure: Rastrigin
function showing final bot position. Right figure: final bot position with cluster centroids -
red diamond denotes found peak and black star denotes cluster centroid.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 11. Analysis of typical TCA search with cluster reduction. Red diamond denotes found
peak. Black star denotes inaccurate peak.

Swarm Robotics, From Biology to Robotics22

The results and interpretation of these two dimensional results are similar to the one
dimensional case. The results roughly follow a (1-ex) form. Therefore, the appropriate
parameter values are again ranges rather than precise values. The values are given in Table 9.

100 200 300 400 500 600 700 800 900 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
, ,

F
ou

nd
 R

at
e

Number of Bots

0 500 1000 1500 2000 2500 3000 3500
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
ou

nd
 R

at
e

Time [s]
Fig. 12. Results showing found rate vs nbots (left figure) and tmax (right figure) for Rastrigin
function

Parameter w/out cluster reduction w/ cluster reduction
nbots ≥ 500 < 300
tmax ≥ 1600 ≥ 1700
waitfactor ≥ 4 ≥ 4

Table 9. Best parameter ranges for 2D Rastrigin function

The final two dimensional results were obtained using parameter values tmax = 1600, nbots
= 600, andwaitfactor = 4. The same parameters were used both with and without cluster
reduction. We averaged the results from 500 simulations and the results are shown in Table
10.

 Avg # peaks found Std deviation Found rate Success rate
w/out cluster reduction 3.7360 1.4375 41.5% 29.2%
w/ cluster reduction 3.3820 1.4888 37.6% 21.8%

Table 10. Final results showing average number of peaks found (out of 9 peaks), found rate
and success rate for 500 iterations for the Rastrigin 2D function

The results from the 2D Rastrigin function are not as good as the results from the 1D
functions. The lower found rate is due primarily to the fact that the Rastrigin function is a
hard function – the peaks do not stand out as prominently as the F3 or even the F4 peaks. In
addition, the 2D search space is much larger; for the Rastrigin function, we used a scale of -
5.1 to +5.12 for both x and y, while the 1D functions are only defined between 0 ≤ x ≤ 1. We
increased the tolerance for the 2D results to 0.4 and it appeared that many cluster centroids
were close to the actual peaks but, unfortunately, not within the tolerance radius.

6. Conclusions

We developed and tested two biologically inspired search strategies for robot swarms. The
first search technique, which we call the physically embedded Particle Swarm Optimization
(pePSO) algorithm, is based on bird flocking and the PSO. The pePSO is able to find single
peaks even in a complex search space such as the Rastrigin function and the Rosenbrock
function. We were also the first research team to show that the pePSO could be
implemented in an actual suite of robots.
Our experiments with the pePSO led to the development of a robot swarm search strategy
that did not require each bot to know its physical location. We based the second search
strategy on the biological principle of trophallaxis and called the algorithm Trophallactic
Cluster Algorithm (TCA). We have simulated the TCA and gotten good results with multi-
peak 1D functions but only fair results with multi-peak 2D functions. The next step to
improve TCA performance is to evaluate the clustering algorithm. It appears that many
times there is a cluster of bots near a peak but the clustering algorithm does not place the
cluster centroid within the tolerance range of the actual peak. A realistic extension is to find
the cluster locations via the K-means algorithm and then see if the actual peak falls within
the bounds of the entire cluster.

7. References

Akat S., Gazi V., “Particle swarm optimization with dynamic neighborhood topology: three
neighborhood strategies and preliminary results,“ IEEE Swarm Intelligence
Symposium, St. Louis, MO, September 2008.

Chang J., Chu S., Roddick J., Pan J., “A parallel particle swarm optimization algorithm with
communication strategies”, Journal of Information Science and Engineering, vol.
21, pp. 809-818, 2005.

Clerc M., Kennedy J., “The particle swarm – explosion, stability, and convergence in a multi-
dimensional complex space”, IEEE Transactions on Evolutionary Computation, vol.
6, pp. 58-73, 2002.

Bio-inspired search strategies for robot swarms 23

The results and interpretation of these two dimensional results are similar to the one
dimensional case. The results roughly follow a (1-ex) form. Therefore, the appropriate
parameter values are again ranges rather than precise values. The values are given in Table 9.

100 200 300 400 500 600 700 800 900 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
, ,

F
ou

nd
 R

at
e

Number of Bots

0 500 1000 1500 2000 2500 3000 3500
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
ou

nd
 R

at
e

Time [s]
Fig. 12. Results showing found rate vs nbots (left figure) and tmax (right figure) for Rastrigin
function

Parameter w/out cluster reduction w/ cluster reduction
nbots ≥ 500 < 300
tmax ≥ 1600 ≥ 1700
waitfactor ≥ 4 ≥ 4

Table 9. Best parameter ranges for 2D Rastrigin function

The final two dimensional results were obtained using parameter values tmax = 1600, nbots
= 600, andwaitfactor = 4. The same parameters were used both with and without cluster
reduction. We averaged the results from 500 simulations and the results are shown in Table
10.

 Avg # peaks found Std deviation Found rate Success rate
w/out cluster reduction 3.7360 1.4375 41.5% 29.2%
w/ cluster reduction 3.3820 1.4888 37.6% 21.8%

Table 10. Final results showing average number of peaks found (out of 9 peaks), found rate
and success rate for 500 iterations for the Rastrigin 2D function

The results from the 2D Rastrigin function are not as good as the results from the 1D
functions. The lower found rate is due primarily to the fact that the Rastrigin function is a
hard function – the peaks do not stand out as prominently as the F3 or even the F4 peaks. In
addition, the 2D search space is much larger; for the Rastrigin function, we used a scale of -
5.1 to +5.12 for both x and y, while the 1D functions are only defined between 0 ≤ x ≤ 1. We
increased the tolerance for the 2D results to 0.4 and it appeared that many cluster centroids
were close to the actual peaks but, unfortunately, not within the tolerance radius.

6. Conclusions

We developed and tested two biologically inspired search strategies for robot swarms. The
first search technique, which we call the physically embedded Particle Swarm Optimization
(pePSO) algorithm, is based on bird flocking and the PSO. The pePSO is able to find single
peaks even in a complex search space such as the Rastrigin function and the Rosenbrock
function. We were also the first research team to show that the pePSO could be
implemented in an actual suite of robots.
Our experiments with the pePSO led to the development of a robot swarm search strategy
that did not require each bot to know its physical location. We based the second search
strategy on the biological principle of trophallaxis and called the algorithm Trophallactic
Cluster Algorithm (TCA). We have simulated the TCA and gotten good results with multi-
peak 1D functions but only fair results with multi-peak 2D functions. The next step to
improve TCA performance is to evaluate the clustering algorithm. It appears that many
times there is a cluster of bots near a peak but the clustering algorithm does not place the
cluster centroid within the tolerance range of the actual peak. A realistic extension is to find
the cluster locations via the K-means algorithm and then see if the actual peak falls within
the bounds of the entire cluster.

7. References

Akat S., Gazi V., “Particle swarm optimization with dynamic neighborhood topology: three
neighborhood strategies and preliminary results,“ IEEE Swarm Intelligence
Symposium, St. Louis, MO, September 2008.

Chang J., Chu S., Roddick J., Pan J., “A parallel particle swarm optimization algorithm with
communication strategies”, Journal of Information Science and Engineering, vol.
21, pp. 809-818, 2005.

Clerc M., Kennedy J., “The particle swarm – explosion, stability, and convergence in a multi-
dimensional complex space”, IEEE Transactions on Evolutionary Computation, vol.
6, pp. 58-73, 2002.

Swarm Robotics, From Biology to Robotics24

Doctor S., Venayagamoorthy G., Gudise V., “Optimal PSO for collective robotic search
applications”, IEEE Congress on Evolutionary Computation, Portland, OR, pp.
1390 – 1395, June 2004.

Eberhart R., Kennedy J., “A new optimizer using particle swarm theory”, Proceedings of
the sixth international symposium on micro machine and human science, Japan,
pp. 39-43, 1995.

Eberhart R., Shi Y., Special issue on Particle Swarm Optimization, IEEE Transactions on
Evolutionary Computation, pp. 201 – 301, June 2004.

Hayes A., Martinoli A., Goodman R., “Comparing distributed exploration strategies with
simulated and real autonomous robots”, Proc of the 5th International Symposium
on Distributed Autonomous Robotic Systems, Knoxville, TN, pp. 261-270, October
2000.

Hayes A., Martinoli A., Goodman R., “Distributed Odor Source Localization”, IEEE Sensors,
pp. 260-271, June 2002.

Hereford J., “A distributed Particle Swarm Optimization algorithm for swarm robotic
applications”, 2006 Congress on Evolutionary Computation, Vancouver, BC, pp.
6143 – 6149, July 2006.

Hereford J., Siebold M., Nichols S., “Using the Particle Swarm Optimization algorithm for
robotic search applications”, Proceedings of the 2007 IEEE Swarm Intelligence
Symposium, Honolulu, HI, pp. 53-59, April 2007.

Hereford J., “A distributed Particle Swarm Optimization algorithm for swarm robotic
applications”, 2006 Congress on Evolutionary Computation, Vancouver, BC, pp.
6143 – 6149, July 2006.

Hereford J., Siebold M., Nichols S., “Using the Particle Swarm Optimization algorithm for
robotic search applications”, Proceedings of the 2007 IEEE Swarm Intelligence
Symposium, Honolulu, HI, pp. 53-59, April 2007.

Hereford J., Siebold M., “Multi-robot search using a physically-embedded Particle Swarm
Optimization”, International Journal of Computational Intelligence Research, March
2008.

Hsiang T-R, Arkin E. M., Bender M. A., Fekete S. P., Mitchell J. S. B., “Algorithms for rapidly
dispersing robot swarms in unknown environments”, Fifth International Workshop
on Algorithmic Foundation of Robotics, December 2002.

Jatmiko W., Sekiyama K., Fukuda T., “A PSO-based mobile sensor network for odor source
localization in dynamic environment: theory, simulation and measurement”, 2006
Congress on Evolutionary Computation, Vancouver, BC, pp. 3781 – 3788, July 2006.

Jatmiko W., Sekiyama K., Fukuda T., “A PSO-based mobile robot for odor source
localization in dynamic advection-diffusion with obstacles environment: theory,
simulation and measurement”, IEEE Computational Intelligence Magazine, vol. 2,
num. 2, pp. 37 – 51, May 2007.

Kennedy J., “Some issues and practices for particle swarms”, Proceedings of the 2007 IEEE
Swarm Intelligence Symposium, Honolulu, HI, pp. 162 – 169, April 2007.

Morlok R., Gini M., “Dispersing robots in an unknown environment”, Distributed
Autonomous Robotic Systems 2004, Toulouse, France, June 2004.

Ngo T. D., Schioler H., “Randomized robot trophollaxis”, in Recent Advances in Robot
Systems, A. Lazinica ed., I-Tech Publishing: Austria, 2008.

Parrott D., Li X., “Locating and tracking multiple dynamic optima by a particle swarm
model using speciation”, IEEE Transactions on Evolutionary Computation, vol. 10, pp.
440-458, August 2006.

Pugh J., Martinoli A., “Multi-robot learning with Particle Swarm Optimization”, Joint
Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan,
May 2006.

Pugh J., Martinoli A., “Inspiring and modeling multi-robot search with Particle Swarm
Optimization”, Proceedings of the 2007 IEEE Swarm Intelligence Symposium,
Honolulu, HI, pp. 332 – 339, April 2007.

Reynolds C. W., “Flocks, Herds, and Schools: A Distributed Behavioral Model”, ACM
SIGGRAPH '87 Conference Proceedings, Anaheim, CA, pp. 25-34, July 1987.

Schmickl T., Crailsheim K., “Trophallaxis among swarm-robots: A biologically inspired
strategy for swarm robots”, BioRob 2006: Biomedical Robotics and
Biomechatronics, Pisa, Italy, February 2006.

Schmickl T., Crailsheim K., “Trophallaxis within a robotic swarm: bio-inspired
communication among robots in a swarm”, Autonomous Robot, vol. 25, pp. 171-188,
August 2008.

Siebold M., Hereford J., “Easily scalable algorithms for dispersing autonomous robots”, 2008
IEEE SoutheastCon, Huntsville, AL, April 2008.

Spears D., Kerr W., and Spears W., “Physics-based robot swarms for coverage problems”,
The International Journal of Intelligent Control and Systems, September 2006, pp. 124-
140.

Spears W., Hamann J., Maxim P., Kunkel P., Zarzhitsky D., Spears, C. D. and Karlsson,
“Where are you?”, Proceedings of the SAB Swarm Robotics Workshop, September
2006, Rome, Italy.

Teller S., Chen K., Balakrishnan H., “Pervasive Pose-Aware Applications and
Infrastructure”, IEEE Computer Graphics and Applications, July/August 2003.

Triannni V., Nolfi S., Dorigo M., “Cooperative hole avoidance in a swarm-bot”, Robotics and
Autonomous Systems, vol. 54, num. 2, pp. 97-103, 2006.

Valdastri P., Corradi P., Menciassi A., Schmickl T., Crailsheim K., Seyfried J., Dario P.,
“Micromanipulation, communication and swarm intelligence issues in a swarm
microbotic platform”, Robotics and Autonomous Systems, vol. 54, pp. 789-804,
2006.

Zarzhitsky D., Spears D., Spears W., “Distributed robotics approach to chemical plume
tracing,” Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2974-2979, August 2005.

Bio-inspired search strategies for robot swarms 25

Doctor S., Venayagamoorthy G., Gudise V., “Optimal PSO for collective robotic search
applications”, IEEE Congress on Evolutionary Computation, Portland, OR, pp.
1390 – 1395, June 2004.

Eberhart R., Kennedy J., “A new optimizer using particle swarm theory”, Proceedings of
the sixth international symposium on micro machine and human science, Japan,
pp. 39-43, 1995.

Eberhart R., Shi Y., Special issue on Particle Swarm Optimization, IEEE Transactions on
Evolutionary Computation, pp. 201 – 301, June 2004.

Hayes A., Martinoli A., Goodman R., “Comparing distributed exploration strategies with
simulated and real autonomous robots”, Proc of the 5th International Symposium
on Distributed Autonomous Robotic Systems, Knoxville, TN, pp. 261-270, October
2000.

Hayes A., Martinoli A., Goodman R., “Distributed Odor Source Localization”, IEEE Sensors,
pp. 260-271, June 2002.

Hereford J., “A distributed Particle Swarm Optimization algorithm for swarm robotic
applications”, 2006 Congress on Evolutionary Computation, Vancouver, BC, pp.
6143 – 6149, July 2006.

Hereford J., Siebold M., Nichols S., “Using the Particle Swarm Optimization algorithm for
robotic search applications”, Proceedings of the 2007 IEEE Swarm Intelligence
Symposium, Honolulu, HI, pp. 53-59, April 2007.

Hereford J., “A distributed Particle Swarm Optimization algorithm for swarm robotic
applications”, 2006 Congress on Evolutionary Computation, Vancouver, BC, pp.
6143 – 6149, July 2006.

Hereford J., Siebold M., Nichols S., “Using the Particle Swarm Optimization algorithm for
robotic search applications”, Proceedings of the 2007 IEEE Swarm Intelligence
Symposium, Honolulu, HI, pp. 53-59, April 2007.

Hereford J., Siebold M., “Multi-robot search using a physically-embedded Particle Swarm
Optimization”, International Journal of Computational Intelligence Research, March
2008.

Hsiang T-R, Arkin E. M., Bender M. A., Fekete S. P., Mitchell J. S. B., “Algorithms for rapidly
dispersing robot swarms in unknown environments”, Fifth International Workshop
on Algorithmic Foundation of Robotics, December 2002.

Jatmiko W., Sekiyama K., Fukuda T., “A PSO-based mobile sensor network for odor source
localization in dynamic environment: theory, simulation and measurement”, 2006
Congress on Evolutionary Computation, Vancouver, BC, pp. 3781 – 3788, July 2006.

Jatmiko W., Sekiyama K., Fukuda T., “A PSO-based mobile robot for odor source
localization in dynamic advection-diffusion with obstacles environment: theory,
simulation and measurement”, IEEE Computational Intelligence Magazine, vol. 2,
num. 2, pp. 37 – 51, May 2007.

Kennedy J., “Some issues and practices for particle swarms”, Proceedings of the 2007 IEEE
Swarm Intelligence Symposium, Honolulu, HI, pp. 162 – 169, April 2007.

Morlok R., Gini M., “Dispersing robots in an unknown environment”, Distributed
Autonomous Robotic Systems 2004, Toulouse, France, June 2004.

Ngo T. D., Schioler H., “Randomized robot trophollaxis”, in Recent Advances in Robot
Systems, A. Lazinica ed., I-Tech Publishing: Austria, 2008.

Parrott D., Li X., “Locating and tracking multiple dynamic optima by a particle swarm
model using speciation”, IEEE Transactions on Evolutionary Computation, vol. 10, pp.
440-458, August 2006.

Pugh J., Martinoli A., “Multi-robot learning with Particle Swarm Optimization”, Joint
Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan,
May 2006.

Pugh J., Martinoli A., “Inspiring and modeling multi-robot search with Particle Swarm
Optimization”, Proceedings of the 2007 IEEE Swarm Intelligence Symposium,
Honolulu, HI, pp. 332 – 339, April 2007.

Reynolds C. W., “Flocks, Herds, and Schools: A Distributed Behavioral Model”, ACM
SIGGRAPH '87 Conference Proceedings, Anaheim, CA, pp. 25-34, July 1987.

Schmickl T., Crailsheim K., “Trophallaxis among swarm-robots: A biologically inspired
strategy for swarm robots”, BioRob 2006: Biomedical Robotics and
Biomechatronics, Pisa, Italy, February 2006.

Schmickl T., Crailsheim K., “Trophallaxis within a robotic swarm: bio-inspired
communication among robots in a swarm”, Autonomous Robot, vol. 25, pp. 171-188,
August 2008.

Siebold M., Hereford J., “Easily scalable algorithms for dispersing autonomous robots”, 2008
IEEE SoutheastCon, Huntsville, AL, April 2008.

Spears D., Kerr W., and Spears W., “Physics-based robot swarms for coverage problems”,
The International Journal of Intelligent Control and Systems, September 2006, pp. 124-
140.

Spears W., Hamann J., Maxim P., Kunkel P., Zarzhitsky D., Spears, C. D. and Karlsson,
“Where are you?”, Proceedings of the SAB Swarm Robotics Workshop, September
2006, Rome, Italy.

Teller S., Chen K., Balakrishnan H., “Pervasive Pose-Aware Applications and
Infrastructure”, IEEE Computer Graphics and Applications, July/August 2003.

Triannni V., Nolfi S., Dorigo M., “Cooperative hole avoidance in a swarm-bot”, Robotics and
Autonomous Systems, vol. 54, num. 2, pp. 97-103, 2006.

Valdastri P., Corradi P., Menciassi A., Schmickl T., Crailsheim K., Seyfried J., Dario P.,
“Micromanipulation, communication and swarm intelligence issues in a swarm
microbotic platform”, Robotics and Autonomous Systems, vol. 54, pp. 789-804,
2006.

Zarzhitsky D., Spears D., Spears W., “Distributed robotics approach to chemical plume
tracing,” Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2974-2979, August 2005.

Swarm Robotics, From Biology to Robotics26

A New Hybrid Particle Swarm Optimization Algorithm to 	
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 27

A New Hybrid Particle Swarm Optimization Algorithm to the Cyclic
Multiple-Part Type Three-Machine Robotic Cell Problem

Isa Nakhai Kamalabadi, Ali Hossein Mirzaei and Saeede Gholami

X

A New Hybrid Particle Swarm Optimization
Algorithm to the Cyclic Multiple-Part Type

Three-Machine Robotic Cell Problem

Isa Nakhai Kamalabadi, Ali Hossein Mirzaei and Saeede Gholami
Department of Industrial Engineering, Faculty of Engineering, Tarbiat Modares

University
Tehran, Iran

1. Introduction

Nowadays the level of automation in manufacturing industries has been increased
dramatically. Some examples of these automation progresses are in cellular manufacturing
and robotic cells. A growing body of evidence suggests that, in a wide variety of industrial
settings, material handling within a cell can be accomplished very efficiently by employing
robots (see (Asfahl, 1992)). Among the interrelated issues to be considered in using robotic
cells are their designs, the scheduling of robot moves, and the sequencing of parts to be
produced.
Robotic cell problem in which robot is used as material handling system received
considerable attentions. Sethi et al. (1992) proved that in buffer-less single-gripper two-
machine robotic cells producing single part-type and having identical robot travel times
between adjacent machines and identical load/unload times, a 1-unit cycle provides the
minimum per unit cycle time in the class of all solutions, cyclic or otherwise. For three
machine case, Crama and van de Klundert (1999), and Brauner and Finke (1999) shown that
the best 1-unit cycle is optimal solution for the class of all cyclic solutions. Hall et al. (1997;
1998) considered the computational complexity of the multiple-type parts three-machine
robotic cell problem under various robot movement policies. This problem is studied for no-
wait robotic cells too. For example Agnetis (2000) found an optimal part schedule for no-
wait robotic cells with three and two machines. Agnetis and pacciarelli (2000) have studied
partscheduling problem for no-wait robotic cells, and found the complexity of the problem.
Crama et al. (2000) studied flow-shop scheduling problems, models for such problems, and
complexity of theses problems. Dawande et al. (2005) reviewed the recent developments in
robotic cells and, provided a classification scheme for robotic cells scheduling problem.
Some other special cases have been studied such as: Drobouchevitch et al. (2006) provided a
model for cyclic production in a dual-gripper robotic cell. Gultekin et al. (2006) studied
robotic cell scheduling problem with tooling constraints for a two-machine robotic cell
where some operations can only be processed on the first machine and some others can only
be processed on the second machine and the remaining can be processed on both machines.

2

Swarm Robotics, From Biology to Robotics28

Gultekin et al. (2007) considered a flexible manufacturing robotic cell with identical parts in
which machines are able to do different operations and the operation time is not system
parameter and is variable. They proposed a lower bound for 1-unit cycles and 2-unit cycles.
Sriskandarajah et al. (1998) classified the part sequence problems associated with different
robot movement policies, in this chapter a robot movement policy is considered, which its
part scheduling problem is NP-Hard, and Baghchi et al. (2006) proposed to solve this
problem, by a heuristic or meta-heuristic. In this chapter a meta-heuristic method based on
particle swarm optimization is applied to solve the problem.
In this chapter an m-machine flexible cyclic cell is considered. All parts in an MPS (A
minimal part set) visit each machine in the same order, the production environment is
cyclic, and parts are produced at the same order repeatedly.
In this chapter, we consider multiple-type parts three-machine robotic cells which have
operational flexibility in which the operations can be performed in any order; moreover
each machine can be configured to perform any operation. To explain the problem, consider
a machining centre where three machine tools are located and a robot is used to feed the
machines namely 1 2 3, ,M M M (see figure 1). All parts are brought to and removed from the
robotic cell by Automated Storage & Retrieval System (AS/RS). The pallets and feeders of
the AS/RS system allow hundreds of parts to be loaded into the cell without human
intervention. The machines can be configured to perform any operation.

Fig. 1. Robotic work cell layout with three machines

The aim of this chapter is to find a schedule for the robot movement and the sequence of
parts to maximize throughput (i.e., to minimize cycle time), as it is showed that this problem
is NP-Complete in general (see Hall et al. (1997)). Hence, this chapter proposes a novel
hybrid particle swarm optimization (HPSO) algorithm to tackle the problem. To validate the
developed model and solution algorithm, various test problems with different sizes is

Robot

AS/RS

M3

M1

M2

randomly generated and the performance of the HPSO is compared with three benchmark
metaheuristics: Genetic Algorithm, PSO-I (basic Particle Swarm Optimization algorithm),
and PSO-II (constriction Particle Swarm Optimization algorithm). The rest of this chapter is
organized as follows: The problem definition and required notations are presented in
Section 2, Section 3 presents the developed mathematical model, and in Section 4, the
proposed hybrid particle swarm optimization algorithm is described. The computational
results are reported in Section 5, and the conclusions are presented in Section 6.

2. Problem definition

The robotic cell problem is a special case of the cyclic blocking flow-shop, where the jobs
might block either the machine or the robot. In a cyclic schedule the same sequences repeat
over and over and the state of the cell at the beginning of each cycle is the similar to the next
cycle. It is assumed that the discipline for the movements of parts is an ordinary flow-shop
discipline. That is a part meets machines 1 2 3, ,M M M consequently.

2.1 Notations
The following notation is used to describe the robotic cell problem:
m : The number of machines
/I O : The automated input-output system for the cell

iPT : The part-type i to be produced

ir : The minimal ratio of part i to be produced

MPS : The number of part set consisting ir parts of type iPT

n : the total number of parts to be produced in the MPS (1 2 ... kn r r r   )

ia : The processing time of part i on 1M

ib : The processing time of part i on 2M

ic : The processing time of part i on 3M


: Robot travelling time between two successive machines (I/O is assumed as
machine 0M)

 : The load/unload time of part i
j
iw : The robot waiting time on jM to unload part i
kS : The robot movement policy S under category k
kT : The cycle time under kS

In this study the standard classification scheme for scheduling problems: 1 2 3| |   is

used where 1 indicates the scheduling environment, 2 describes the job characteristics

and 3 defines the objective function (Dawande et al., 2005). For example

A New Hybrid Particle Swarm Optimization Algorithm to 	
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 29

Gultekin et al. (2007) considered a flexible manufacturing robotic cell with identical parts in
which machines are able to do different operations and the operation time is not system
parameter and is variable. They proposed a lower bound for 1-unit cycles and 2-unit cycles.
Sriskandarajah et al. (1998) classified the part sequence problems associated with different
robot movement policies, in this chapter a robot movement policy is considered, which its
part scheduling problem is NP-Hard, and Baghchi et al. (2006) proposed to solve this
problem, by a heuristic or meta-heuristic. In this chapter a meta-heuristic method based on
particle swarm optimization is applied to solve the problem.
In this chapter an m-machine flexible cyclic cell is considered. All parts in an MPS (A
minimal part set) visit each machine in the same order, the production environment is
cyclic, and parts are produced at the same order repeatedly.
In this chapter, we consider multiple-type parts three-machine robotic cells which have
operational flexibility in which the operations can be performed in any order; moreover
each machine can be configured to perform any operation. To explain the problem, consider
a machining centre where three machine tools are located and a robot is used to feed the
machines namely 1 2 3, ,M M M (see figure 1). All parts are brought to and removed from the
robotic cell by Automated Storage & Retrieval System (AS/RS). The pallets and feeders of
the AS/RS system allow hundreds of parts to be loaded into the cell without human
intervention. The machines can be configured to perform any operation.

Fig. 1. Robotic work cell layout with three machines

The aim of this chapter is to find a schedule for the robot movement and the sequence of
parts to maximize throughput (i.e., to minimize cycle time), as it is showed that this problem
is NP-Complete in general (see Hall et al. (1997)). Hence, this chapter proposes a novel
hybrid particle swarm optimization (HPSO) algorithm to tackle the problem. To validate the
developed model and solution algorithm, various test problems with different sizes is

Robot

AS/RS

M3

M1

M2

randomly generated and the performance of the HPSO is compared with three benchmark
metaheuristics: Genetic Algorithm, PSO-I (basic Particle Swarm Optimization algorithm),
and PSO-II (constriction Particle Swarm Optimization algorithm). The rest of this chapter is
organized as follows: The problem definition and required notations are presented in
Section 2, Section 3 presents the developed mathematical model, and in Section 4, the
proposed hybrid particle swarm optimization algorithm is described. The computational
results are reported in Section 5, and the conclusions are presented in Section 6.

2. Problem definition

The robotic cell problem is a special case of the cyclic blocking flow-shop, where the jobs
might block either the machine or the robot. In a cyclic schedule the same sequences repeat
over and over and the state of the cell at the beginning of each cycle is the similar to the next
cycle. It is assumed that the discipline for the movements of parts is an ordinary flow-shop
discipline. That is a part meets machines 1 2 3, ,M M M consequently.

2.1 Notations
The following notation is used to describe the robotic cell problem:
m : The number of machines
/I O : The automated input-output system for the cell

iPT : The part-type i to be produced

ir : The minimal ratio of part i to be produced

MPS : The number of part set consisting ir parts of type iPT

n : the total number of parts to be produced in the MPS (1 2 ... kn r r r   )

ia : The processing time of part i on 1M

ib : The processing time of part i on 2M

ic : The processing time of part i on 3M


: Robot travelling time between two successive machines (I/O is assumed as
machine 0M)

 : The load/unload time of part i
j
iw : The robot waiting time on jM to unload part i
kS : The robot movement policy S under category k
kT : The cycle time under kS

In this study the standard classification scheme for scheduling problems: 1 2 3| |   is

used where 1 indicates the scheduling environment, 2 describes the job characteristics

and 3 defines the objective function (Dawande et al., 2005). For example

Swarm Robotics, From Biology to Robotics30

1
3 | 2, | tFRC k S C denotes the minimization of cycle time for multi-type part problem

in a three flow-shop robotic cell, restricted to robot move cycle 1S .

2.2 Three machine robotic flow shop cell 3 | 2 | tFRC K C
In the three machine robotic flow shop cell, there are six different potentially optimal
policies for robot to move the parts between the machines (Bagchi et al., 2006). Sethi et al.
(1992) showed that any potentially optimal one-unit robot move cycle in a m machine
robotic cell can be described by exactly m+1 following basic activities:

iM


: Load a part on iM 1,2,...,i m

iM


: Unload a finished part from iM 1,2,...,i m

In other words, a cycle can be uniquely described by a permutation of the m+1 activity. The
following are the available robot move cycles for m=3 flow-shop robotic cell (Sethi et al.,
1992):

 1
3 1 2 3 3: , , , ,S M M M M M    

 2
3 1 3 2 3: , , , ,S M M M M M    

 3
3 3 1 2 3: , , , ,S M M M M M    

 4
3 2 3 1 3: , , , ,S M M M M M    

 5
3 2 1 3 3: , , , ,S M M M M M    

 6
3 3 2 1 3: , , , ,S M M M M M    

In this chapter we consider a three machine robotic cell problem under the 6S policy

(Figure 2). The problem of finding the best part sequence using the robot move cycle 6S is
NP-complete (Hall et al., 1998).

Fig. 2. The robot movement under 6S

M3 M1

I/O




M2













Lemma 1. The cycle times of one unit for the policy 6s are given by:
6

I, (i) (i+1) (i+2) (i+2) (i+1) (i)T 12 8 max{0,a -8 -4 ,b -8 -4 ,c -8 -4 }              

Proof: According to figure 2 the robot movement under policy 6s is as follow:
Pickup part 2ip  from)(I/O  move it to)(M1  load 2ip  onto)(M1  go to)(2 M3  if

necessary wait at)(w M 3
i

3 , unload ip from)(M3  move it to)(I/O  drop ip at)(I/O 

go to)(2 M2  if necessary wait at)(w M 2
1i

2
 , unload 1ip  from)(M2  move it to)(M3  ,

load 1iP onto)(M3  go to)(2 M1  if necessary wait at)(w M 1
2i

1
 , unload 2iP from

)(M1  move it to)(M2  load 2iP onto)(M2  go to)(2 I/O  then start a new cycle by
picking up the part 3iP .
The cycle time by considering waiting times is as follow:

6 2 1
, () (1) (2) 1 2 312 8 i i i
I i i iT w w w      

      
2 1

1 (2) 2 3max{0, 8 4 }i i i
iw a w w   
    

1
2 (1) 3max{0, 8 4 }i i

iw b w  
   

2
3 () 1max{0, 8 4 }i i

iw c w     
6
, () (1) (2) (2) (1) ()12 8 max{0, 8 4 , 8 4 , 8 4 }I i i i i i iT a b c                       

3. Developing mathematical model

In this section we develop a systematic method to produce necessary mathematical
programming formulation for robotic cells. Therefore first we model single-part type
problem through Petri nets, and then extend the model to multiple-part type problem.
A Petri-net is a four-tuple (, , ,)PN P T A W , where 1 2{ , ,..., }nP p p p is a finite set of

places, 1 2{ , ,..., }mT t t t is a finite set of transitions, () ()A P T T P    is a finite

set of arcs, and : {1,2,3,...}W A is a weight function.

Every place has an initial marking 0 : {0,1,2,...}M P . If we assign time to the
transitions we call it as Timed Petri net.
The behaviour of many systems can be described by system states and their changes, to
simulate the dynamic behaviour of system; marking in a Petri-net is changed according to
the following transition (firing) rule: 1) A transition is said to be enabled if each input place
p of t is marked at least with (,)w p t tokens, where (,)w p t is weight of the arc from p to
t. 2) An enabled transition may or may not be fired (depending on whether or not the event
takes place). A firing of an enabled transition t removes (,)w p t tokens from each input

place p of t and adds (,)w p t tokens to each output place p of t , where (,)w p t is the
weight of the arc from t to p.

A New Hybrid Particle Swarm Optimization Algorithm to 	
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 31

1
3 | 2, | tFRC k S C denotes the minimization of cycle time for multi-type part problem

in a three flow-shop robotic cell, restricted to robot move cycle 1S .

2.2 Three machine robotic flow shop cell 3 | 2 | tFRC K C
In the three machine robotic flow shop cell, there are six different potentially optimal
policies for robot to move the parts between the machines (Bagchi et al., 2006). Sethi et al.
(1992) showed that any potentially optimal one-unit robot move cycle in a m machine
robotic cell can be described by exactly m+1 following basic activities:

iM


: Load a part on iM 1,2,...,i m

iM


: Unload a finished part from iM 1,2,...,i m

In other words, a cycle can be uniquely described by a permutation of the m+1 activity. The
following are the available robot move cycles for m=3 flow-shop robotic cell (Sethi et al.,
1992):

 1
3 1 2 3 3: , , , ,S M M M M M    

 2
3 1 3 2 3: , , , ,S M M M M M    

 3
3 3 1 2 3: , , , ,S M M M M M    

 4
3 2 3 1 3: , , , ,S M M M M M    

 5
3 2 1 3 3: , , , ,S M M M M M    

 6
3 3 2 1 3: , , , ,S M M M M M    

In this chapter we consider a three machine robotic cell problem under the 6S policy

(Figure 2). The problem of finding the best part sequence using the robot move cycle 6S is
NP-complete (Hall et al., 1998).

Fig. 2. The robot movement under 6S

M3 M1

I/O




M2













Lemma 1. The cycle times of one unit for the policy 6s are given by:
6

I, (i) (i+1) (i+2) (i+2) (i+1) (i)T 12 8 max{0,a -8 -4 ,b -8 -4 ,c -8 -4 }              

Proof: According to figure 2 the robot movement under policy 6s is as follow:
Pickup part 2ip  from)(I/O  move it to)(M1  load 2ip  onto)(M1  go to)(2 M3  if

necessary wait at)(w M 3
i

3 , unload ip from)(M3  move it to)(I/O  drop ip at)(I/O 

go to)(2 M2  if necessary wait at)(w M 2
1i

2
 , unload 1ip  from)(M2  move it to)(M3  ,

load 1iP onto)(M3  go to)(2 M1  if necessary wait at)(w M 1
2i

1
 , unload 2iP from

)(M1  move it to)(M2  load 2iP onto)(M2  go to)(2 I/O  then start a new cycle by
picking up the part 3iP .
The cycle time by considering waiting times is as follow:

6 2 1
, () (1) (2) 1 2 312 8 i i i
I i i iT w w w      

      
2 1

1 (2) 2 3max{0, 8 4 }i i i
iw a w w   
    

1
2 (1) 3max{0, 8 4 }i i

iw b w  
   

2
3 () 1max{0, 8 4 }i i

iw c w     
6
, () (1) (2) (2) (1) ()12 8 max{0, 8 4 , 8 4 , 8 4 }I i i i i i iT a b c                       

3. Developing mathematical model

In this section we develop a systematic method to produce necessary mathematical
programming formulation for robotic cells. Therefore first we model single-part type
problem through Petri nets, and then extend the model to multiple-part type problem.
A Petri-net is a four-tuple (, , ,)PN P T A W , where 1 2{ , ,..., }nP p p p is a finite set of

places, 1 2{ , ,..., }mT t t t is a finite set of transitions, () ()A P T T P    is a finite

set of arcs, and : {1,2,3,...}W A is a weight function.

Every place has an initial marking 0 : {0,1,2,...}M P . If we assign time to the
transitions we call it as Timed Petri net.
The behaviour of many systems can be described by system states and their changes, to
simulate the dynamic behaviour of system; marking in a Petri-net is changed according to
the following transition (firing) rule: 1) A transition is said to be enabled if each input place
p of t is marked at least with (,)w p t tokens, where (,)w p t is weight of the arc from p to
t. 2) An enabled transition may or may not be fired (depending on whether or not the event
takes place). A firing of an enabled transition t removes (,)w p t tokens from each input

place p of t and adds (,)w p t tokens to each output place p of t , where (,)w p t is the
weight of the arc from t to p.

Swarm Robotics, From Biology to Robotics32

By considering a single-part type system, the robot arm at steady state is located at machine

2M , therefore by coming back to this node we have a complete cycle for the robot arm.
The related Petri net for robot movements is shown in Figure 3 and the descriptions of the
nodes for this graph with respective execution times would be as follows:

Fig. 3. Petri net for 6s policy

1R : go to)(3 M ; 2R : load)(3 M ; 3R : go to)2(1 M ;

4R : unload)(1 M ; 5R : go to)2(2 M ; 6R : load)(2 M ;

7R : go to input, pickup a new part, go to)3(1  M ; 8R : load)(1 M ;

9R : go to)2(3 M ; 10R : unload)(3 M ;

11R : go to output, drop the part, go to)3(3  M ; 12R : unload)(2 M ;

jRP : wait at)(i
jj wM is : starting time of iR ; jsp : starting time of jRP

 : 1M is ready to be unloaded;

 : 2M is ready to be unloaded;

 : 3M is ready to be unloaded;

By considering a multiple-part type system, at machine 1M , when we want to load a part
on the machine we have to decide which part should be chosen such that the cycle time is

P2

P12 

’

R1

R12

R14

P1 P3 R2 P4 R3

P11

R11

P10
P9 P8 P7

P5

P6



’

’









w1

w3

w2

a
b

c

minimized. The same thing also can be achieved for 2M and 3M . Based on the choosing

gate definition we simply have three choosing gates as  ,  , and  . Thus we can write

the following formulation using 0-1 integer variables 1ijx , 2ijx , and 3ijx as:

1 4,1 8,
1

: 1 ()
n

n t in i
i

s s C x a 


   

4, 1 8,
1

: 1 () 2,..., .
n

j j j ij i
i

s s x a j n 


   

12, 6,
1

: 2 () 1,..., .
n

j j j ij i
i

s s x b j n 


   

10, 2,
1

: 3 () 1,..., .
n

j j j ij i
i

s s x c j n 


   

Definition. A marked graph is a Petri-net such that every place has only one input and only
one output.
Theorem 1. For a marked graph which every place has i m tokens (see figure 4), the
following relation B A i ts s mC  , where As , Bs are starting times of transitions A and B

respectively, and tC is cycle time, is true.

Fig. 4. The marked graph in theorem 1

Proof: see ref. (Maggot, 1984).

In addition the following feasibility constraints assign unique positioning for every job:

.,,111

,,111

1

1

nix

njx

n

j
ij

n

i
ij

















To keep the sequence of the parts between the machines in a right order, we have to add the
following constraints:

.1,...,132

1,...,121

1

1

njnixx
njnixx

jiji

jiji












Where, we assume that 1,1, 11 ini xx  because of the cyclic repetition of parts.
Thus the complete model for the three machine robotic cell with multiple-part would be as
follows:

A New Hybrid Particle Swarm Optimization Algorithm to 	
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 33

By considering a single-part type system, the robot arm at steady state is located at machine

2M , therefore by coming back to this node we have a complete cycle for the robot arm.
The related Petri net for robot movements is shown in Figure 3 and the descriptions of the
nodes for this graph with respective execution times would be as follows:

Fig. 3. Petri net for 6s policy

1R : go to)(3 M ; 2R : load)(3 M ; 3R : go to)2(1 M ;

4R : unload)(1 M ; 5R : go to)2(2 M ; 6R : load)(2 M ;

7R : go to input, pickup a new part, go to)3(1  M ; 8R : load)(1 M ;

9R : go to)2(3 M ; 10R : unload)(3 M ;

11R : go to output, drop the part, go to)3(3  M ; 12R : unload)(2 M ;

jRP : wait at)(i
jj wM is : starting time of iR ; jsp : starting time of jRP

 : 1M is ready to be unloaded;

 : 2M is ready to be unloaded;

 : 3M is ready to be unloaded;

By considering a multiple-part type system, at machine 1M , when we want to load a part
on the machine we have to decide which part should be chosen such that the cycle time is

P2

P12 

’

R1

R12

R14

P1 P3 R2 P4 R3

P11

R11

P10
P9 P8 P7

P5

P6



’

’









w1

w3

w2

a
b

c

minimized. The same thing also can be achieved for 2M and 3M . Based on the choosing

gate definition we simply have three choosing gates as  ,  , and  . Thus we can write

the following formulation using 0-1 integer variables 1ijx , 2ijx , and 3ijx as:

1 4,1 8,
1

: 1 ()
n

n t in i
i

s s C x a 


   

4, 1 8,
1

: 1 () 2,..., .
n

j j j ij i
i

s s x a j n 


   

12, 6,
1

: 2 () 1,..., .
n

j j j ij i
i

s s x b j n 


   

10, 2,
1

: 3 () 1,..., .
n

j j j ij i
i

s s x c j n 


   

Definition. A marked graph is a Petri-net such that every place has only one input and only
one output.
Theorem 1. For a marked graph which every place has i m tokens (see figure 4), the
following relation B A i ts s mC  , where As , Bs are starting times of transitions A and B

respectively, and tC is cycle time, is true.

Fig. 4. The marked graph in theorem 1

Proof: see ref. (Maggot, 1984).

In addition the following feasibility constraints assign unique positioning for every job:

.,,111

,,111

1

1

nix

njx

n

j
ij

n

i
ij

















To keep the sequence of the parts between the machines in a right order, we have to add the
following constraints:

.1,...,132

1,...,121

1

1

njnixx
njnixx

jiji

jiji












Where, we assume that 1,1, 11 ini xx  because of the cyclic repetition of parts.
Thus the complete model for the three machine robotic cell with multiple-part would be as
follows:

Swarm Robotics, From Biology to Robotics34

6min tC
Subject to:

  tn12,2,11,1 -: Cssp nj ,,2 (1)

   jjj ssp 2,1 nj ,,1 (2)

 2124,3  jjjj wssp nj ,,1 (3)

  jjj ssp 46,5 nj ,,1 (4)
 3268,7  jjj ssp nj ,,1 (5)

 23810,9  jjjj wssp nj ,,1 (6)
 32201,11   jjjj wssp nj ,,1 (7)

  


)(1:
1

71

n

i
aiint iaxCss (8)

  




n

i
aiijjj iaxss

1
7j)(1: nj ,,2 (9)

  


)(2:
1

612j

n

i
biijjj ibxss nj ,,1 (10)

  


)(3:
1

210j

n

i
ciijjj icxss nj ,,1 (11)

jiji xx   21 nji  1 (12)

jiji xx   32 nji  1 (13)

11
1




n

i
ijx nj ,,1 (14)

11
1




n

j
ijx ni ,,1 (15)

, , 0,i j kjs w   }1,0{3,2,1 xxx

4. The proposed hybrid particle swarm optimization (HPSO) algorithm

The particle swarm optimization (PSO) is a population based stochastic optimization
technique that was developed by Kennedy and Eberhart in 1995 (Hu et al., 2004). The PSO
inspired by social behavior of bird flocking or fish schooling. In PSO, each solution is a bird
in the flock and is referred to as a particle. A particle is analogous to a chromosome in GAs
(Kennedy and Eberhart, 1995). All particles have fitness values which are evaluated by the
fitness function to be optimized, and have velocities which direct the flying of the particles.

The particles fly through the problem space by following the particles with the best
solutions so far (Shi and Eberhart, 1998).
The general scheme of the proposed HPSO is presented in Figure 5.

Fig 5. The schematic structure of the proposed HPSO

In this chapter, we extend the discrete PSO of Liao et al. (2007) to solve the robotic cell
problem. In the proposed HPSO the velocity of each particle is calculated according to
equation (16).

    
1 2() () () ()id id id id id idV wV c rand pBest x c Rand lBest x

t Number of Iterations a FrequencyMatrix b

         

  

(16)

Where 1c and 2c are the learning factors that control the influence of pBest and lBest. w is
the inertia weight which controls the exploration and exploitation abilities of algorithm.

()rand and ()Rand are two independently generated random numbers, t is the current

iteration and a and b are two parameters that adjust the influence of the Frequency
Matrix on velocity value. pBest is the best position which each particle has found since the
first step and it represents the experiential knowledge of a particle. After the cloning
procedure (the detailed of cloning procedure will be described in the next section), a
neighborhood for each particle is achieved. The best particle in this neighborhood is selected
as lBest.

 Creating
initial

particles
(solution)

 Fitness
evaluation for
each particle

 Forming Best Set
(selecting N best

Calculating

particles'
velocities and

positions

Stop?

No

 End

 Start

 Cloning (creating
a neighborhood
for each particle)

 Updating gBest (the best
sequence in the swarm)

 Forming Frequency
Matrix Yes

 Updating pBest
and lBest

 Inversion
mutation

A New Hybrid Particle Swarm Optimization Algorithm to 	
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 35

6min tC
Subject to:

  tn12,2,11,1 -: Cssp nj ,,2 (1)

   jjj ssp 2,1 nj ,,1 (2)

 2124,3  jjjj wssp nj ,,1 (3)

  jjj ssp 46,5 nj ,,1 (4)
 3268,7  jjj ssp nj ,,1 (5)

 23810,9  jjjj wssp nj ,,1 (6)
 32201,11   jjjj wssp nj ,,1 (7)

  


)(1:
1

71

n

i
aiint iaxCss (8)

  




n

i
aiijjj iaxss

1
7j)(1: nj ,,2 (9)

  


)(2:
1

612j

n

i
biijjj ibxss nj ,,1 (10)

  


)(3:
1

210j

n

i
ciijjj icxss nj ,,1 (11)

jiji xx   21 nji  1 (12)

jiji xx   32 nji  1 (13)

11
1




n

i
ijx nj ,,1 (14)

11
1




n

j
ijx ni ,,1 (15)

, , 0,i j kjs w   }1,0{3,2,1 xxx

4. The proposed hybrid particle swarm optimization (HPSO) algorithm

The particle swarm optimization (PSO) is a population based stochastic optimization
technique that was developed by Kennedy and Eberhart in 1995 (Hu et al., 2004). The PSO
inspired by social behavior of bird flocking or fish schooling. In PSO, each solution is a bird
in the flock and is referred to as a particle. A particle is analogous to a chromosome in GAs
(Kennedy and Eberhart, 1995). All particles have fitness values which are evaluated by the
fitness function to be optimized, and have velocities which direct the flying of the particles.

The particles fly through the problem space by following the particles with the best
solutions so far (Shi and Eberhart, 1998).
The general scheme of the proposed HPSO is presented in Figure 5.

Fig 5. The schematic structure of the proposed HPSO

In this chapter, we extend the discrete PSO of Liao et al. (2007) to solve the robotic cell
problem. In the proposed HPSO the velocity of each particle is calculated according to
equation (16).

    
1 2() () () ()id id id id id idV wV c rand pBest x c Rand lBest x

t Number of Iterations a FrequencyMatrix b

         

  

(16)

Where 1c and 2c are the learning factors that control the influence of pBest and lBest. w is
the inertia weight which controls the exploration and exploitation abilities of algorithm.

()rand and ()Rand are two independently generated random numbers, t is the current

iteration and a and b are two parameters that adjust the influence of the Frequency
Matrix on velocity value. pBest is the best position which each particle has found since the
first step and it represents the experiential knowledge of a particle. After the cloning
procedure (the detailed of cloning procedure will be described in the next section), a
neighborhood for each particle is achieved. The best particle in this neighborhood is selected
as lBest.

 Creating
initial

particles
(solution)

 Fitness
evaluation for
each particle

 Forming Best Set
(selecting N best

Calculating

particles'
velocities and

positions

Stop?

No

 End

 Start

 Cloning (creating
a neighborhood
for each particle)

 Updating gBest (the best
sequence in the swarm)

 Forming Frequency
Matrix Yes

 Updating pBest
and lBest

 Inversion
mutation

Swarm Robotics, From Biology to Robotics36

As Liao et al. (2007), the velocity values transfers from real numbers to the probability of
changes by using the equation (17):
  () 1 1 exp()id ids V V   (17)

where ()ids V stands for the probability of idx taking the value 1. In the proposed
algorithm, the new position (sequence) of each particle is constructed based on its
probability of changes that calculated by equation (17). Precisely, for calculating the new
position of each particle, the algorithm starts with a null sequence and places an
unscheduled job j in position k (k = 1, 2, . . . , n) according to the probability that determined
by equation (18):
 (,) () ()i id idj F

q j k s V s V


  (18)

where F is the set of the first f unscheduled jobs as present in the best particle (solution)
obtained till current iteration. To achieve a complete sequence, the jobs are added one after
another to the partial sequence.
The proposed HPSO terminates after a given number of iterations and the best sequence is
reported as the final solution for the problem.

4.1 Cloning
For avoiding local optimal solutions we implement cloning procedure which in summary
can be described as follows:

1. M copies of the solution are generated so that there are (M+1) identical solutions
available.

2. Each of the M copies are subjected to the swapping mutation.
3. In each clone only the original solution participates in HPSO evolution procedure

whereas the other copies of the solution would be discarded.
4. The above procedure is repeated for all of the solutions in the swarm.

4.2 Fitness evaluation
As any metaheuristic algorithm, the HPSO uses a fitness function to quantify the optimality

of a particle (sequence). The cycle times of one unit for the policy 6s are given by:

6
I, (i) (i+1) (i+2) (i+2) (i+1) (i)T 12 8 max{0,a -8 -4 ,b -8 -4 ,c -8 -4 }              

Hence, the following equeation is applied to calculate the fitness function.

4.3 Best Set formation
In the proposed HPSO, to improve efficiency of the algorithm, the best solutions which are
obtained so far are selected and kept in the Best Set. Then, the Best Set is applied to forming
the Frequency Matrix in next phase of the algorithm.
To form the Best Set, in the first iteration of algorithm and after the cloning phase of the
algorithm, the B first best particles among all particles in the swarm are selected and placed

in the Best Set. In the other iterations, only the particles that better than the existed particles
in the Best Set are replaced with them.

4.4 Frequency Matrix formation
The Frequency Matrix is a matrix which represents the average times that a specific job goes
to a specific position according to sequence of particles in the Best Set. To illustrate the
Frequency Matrix formation procedure, assume that the following particles are in the Best
Set.

First particle (sequence): (1,2,3,4,5)
Second particle (sequence): (1,2,4,3,5)
Third particle (sequence): (1,2,3,5,4)

Therefore, the Best Set will be as follows (Figure 6):

5 4 3 2 1 Position
Job

0 0 0 0 1 1

0 0 0 1 0 2

0 .33 .66 0 0 3

.33 .33 .33 0 0 4

.66 .33 0 0 0 5

Fig. 6. The example Frequency Matrix

4.5 Inversion mutation
The mutation operator causes a random movement in the search space that result in solution
diversity. Inversion mutation is adopted in the proposed algorithm. The inversion mutation,
as illustrated in Figure 7, selects two positions within a chromosome at random and then
inverts the subsequence between these two positions.

Fig. 7. General scheme inversion mutation

1 2 3 4 5 6 7 8

1 3 2 5 4 6 7 8

A New Hybrid Particle Swarm Optimization Algorithm to 	
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 37

As Liao et al. (2007), the velocity values transfers from real numbers to the probability of
changes by using the equation (17):
  () 1 1 exp()id ids V V   (17)

where ()ids V stands for the probability of idx taking the value 1. In the proposed
algorithm, the new position (sequence) of each particle is constructed based on its
probability of changes that calculated by equation (17). Precisely, for calculating the new
position of each particle, the algorithm starts with a null sequence and places an
unscheduled job j in position k (k = 1, 2, . . . , n) according to the probability that determined
by equation (18):
 (,) () ()i id idj F

q j k s V s V


  (18)

where F is the set of the first f unscheduled jobs as present in the best particle (solution)
obtained till current iteration. To achieve a complete sequence, the jobs are added one after
another to the partial sequence.
The proposed HPSO terminates after a given number of iterations and the best sequence is
reported as the final solution for the problem.

4.1 Cloning
For avoiding local optimal solutions we implement cloning procedure which in summary
can be described as follows:

1. M copies of the solution are generated so that there are (M+1) identical solutions
available.

2. Each of the M copies are subjected to the swapping mutation.
3. In each clone only the original solution participates in HPSO evolution procedure

whereas the other copies of the solution would be discarded.
4. The above procedure is repeated for all of the solutions in the swarm.

4.2 Fitness evaluation
As any metaheuristic algorithm, the HPSO uses a fitness function to quantify the optimality

of a particle (sequence). The cycle times of one unit for the policy 6s are given by:

6
I, (i) (i+1) (i+2) (i+2) (i+1) (i)T 12 8 max{0,a -8 -4 ,b -8 -4 ,c -8 -4 }              

Hence, the following equeation is applied to calculate the fitness function.

4.3 Best Set formation
In the proposed HPSO, to improve efficiency of the algorithm, the best solutions which are
obtained so far are selected and kept in the Best Set. Then, the Best Set is applied to forming
the Frequency Matrix in next phase of the algorithm.
To form the Best Set, in the first iteration of algorithm and after the cloning phase of the
algorithm, the B first best particles among all particles in the swarm are selected and placed

in the Best Set. In the other iterations, only the particles that better than the existed particles
in the Best Set are replaced with them.

4.4 Frequency Matrix formation
The Frequency Matrix is a matrix which represents the average times that a specific job goes
to a specific position according to sequence of particles in the Best Set. To illustrate the
Frequency Matrix formation procedure, assume that the following particles are in the Best
Set.

First particle (sequence): (1,2,3,4,5)
Second particle (sequence): (1,2,4,3,5)
Third particle (sequence): (1,2,3,5,4)

Therefore, the Best Set will be as follows (Figure 6):

5 4 3 2 1 Position
Job

0 0 0 0 1 1

0 0 0 1 0 2

0 .33 .66 0 0 3

.33 .33 .33 0 0 4

.66 .33 0 0 0 5

Fig. 6. The example Frequency Matrix

4.5 Inversion mutation
The mutation operator causes a random movement in the search space that result in solution
diversity. Inversion mutation is adopted in the proposed algorithm. The inversion mutation,
as illustrated in Figure 7, selects two positions within a chromosome at random and then
inverts the subsequence between these two positions.

Fig. 7. General scheme inversion mutation

1 2 3 4 5 6 7 8

1 3 2 5 4 6 7 8

Swarm Robotics, From Biology to Robotics38

5. Experimental Results

The performance of the proposed hybrid particle swarm optimization is compared with
three well-known metaheuristic algorithms: GA, PSO-I, and PSO-II. These algorithms have
been coded in the Visual Basic 6 and executed on a Pentium 4, 1.7 GHz, and Windows XP
using 256 MB of RAM. Note that the performance of the proposed algorithm is also
compared with Lingo 8 for small-sized problems.

5.1. Benchmark algorithms
At first, we present a brief discussion about the implementation of benchmark algorithms:
GA, PSO-I, and PSO-II.

5.1.1 Genetic algorithm (GA)
Genetic Algorithm (GA) was developed by Holland in 1975 as a tool for solving complex
optimization problems of large solution search spaces (Holland, 1992). GAs have been
applied successfully to a wide variety of optimization problems to find optimal or near-
optimal solutions (Gen and Cheng, 1997). Thus, for evaluating the performance and
reliability of the proposed PSO algorithm, we use GA as one of three benchmark algorithms.
A pseudocode for the applied GA is provided in Figure 8.

Fig. 8. Pseudocode for the Genetic Algorithm

Begin;
 Generate random population of N solutions;
 For each solution: calculate fitness;
 For i=1 to number of generations (G);
 For j=1 to N × Crossovr_Rate;
 Select two parents randomly;
 Generate an offspring = crossover (Parent1 and Parent2);
 Calculate the fitness of the offspring;
 If the offspring is better than the worst solution then
 Replace the worst solution by offspring;
 Else generate a new random solution;
 Next;
 Do
 Copy the ith best solution from previous generation to current generation;
 Until population size (N) is not reached;
 For k=1 to N × Mutation_Rate;
 Select one solution randomly;
 Generate a New_Solution = mutate (Solution);
 Next;
 Next;
End.

5.1.2 PSO-I (Basic algorithm)
In this section, the structure of PSO-I (basic algorithm) is briefly described. The pseudocode
of the applied PSO-I is provided in Figure 9.

Fig. 9. Pseudocode for the PSO-I Algorithm (Shi and Eberhart, 1998)

PSO is initialized with a group of random particles and then search for optima by updating
each generation. In each iteration, particles are updated by following two best values. The
first one is the location of the best solution a particle has achieved so far which referred it as
pBest. Another best value is the location of the best solution in all the population has
achieved so far. This value is called gBest (Shi and Eberhart, 1998). Equation (19) calculates a
new velocity for each particle as follows.

1 2() () () ()id id id id nd idV w V c Rand pBest x c rand nBest x         
(19)

Where ()Rand and ()rand are two random numbers independently generated. 1c and

2c are two learning factors, which control the influence of pBest and nBest on the search
process. The global exploration and local exploitation abilities of particle swarm are
balanced by using the inertia weight, w . Particles' velocities are bounded to a maximum
velocity maxV for managing the global exploration ability of PSO (Shi and Eberhart, 1998).

Equation (20) updates each particle's position (idx) in the solution hyperspace.

id id idx x V 
(20)

5.1.3 PSO-II (Constriction algorithm)
In this section, the structure of PSO-II (constriction algorithm) is expressed in a few words.
Also the structure of PSO-II is similar to PSO-I (as illustrated in Figure 4), but in PSO-II the
velocity for each particle is calculated according to equation (21) (Engelbrecht, 2005).
    1 2id id id id nd idV V pBest x nBest x         (21)

Where

Initialize the particle population randomly
Do

Calculate fitness values of each particle
Update pBest if the current fitness value is better than pBest
Determine nBest for each particle: choose the particle with the best
fitness value of all the neighbors as the nBest
For each particle

Calculate particle velocity according to (19)
Update particle position according to (20)

While maximum iterations or minimum criteria is not attained

A New Hybrid Particle Swarm Optimization Algorithm to 	
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 39

5. Experimental Results

The performance of the proposed hybrid particle swarm optimization is compared with
three well-known metaheuristic algorithms: GA, PSO-I, and PSO-II. These algorithms have
been coded in the Visual Basic 6 and executed on a Pentium 4, 1.7 GHz, and Windows XP
using 256 MB of RAM. Note that the performance of the proposed algorithm is also
compared with Lingo 8 for small-sized problems.

5.1. Benchmark algorithms
At first, we present a brief discussion about the implementation of benchmark algorithms:
GA, PSO-I, and PSO-II.

5.1.1 Genetic algorithm (GA)
Genetic Algorithm (GA) was developed by Holland in 1975 as a tool for solving complex
optimization problems of large solution search spaces (Holland, 1992). GAs have been
applied successfully to a wide variety of optimization problems to find optimal or near-
optimal solutions (Gen and Cheng, 1997). Thus, for evaluating the performance and
reliability of the proposed PSO algorithm, we use GA as one of three benchmark algorithms.
A pseudocode for the applied GA is provided in Figure 8.

Fig. 8. Pseudocode for the Genetic Algorithm

Begin;
 Generate random population of N solutions;
 For each solution: calculate fitness;
 For i=1 to number of generations (G);
 For j=1 to N × Crossovr_Rate;
 Select two parents randomly;
 Generate an offspring = crossover (Parent1 and Parent2);
 Calculate the fitness of the offspring;
 If the offspring is better than the worst solution then
 Replace the worst solution by offspring;
 Else generate a new random solution;
 Next;
 Do
 Copy the ith best solution from previous generation to current generation;
 Until population size (N) is not reached;
 For k=1 to N × Mutation_Rate;
 Select one solution randomly;
 Generate a New_Solution = mutate (Solution);
 Next;
 Next;
End.

5.1.2 PSO-I (Basic algorithm)
In this section, the structure of PSO-I (basic algorithm) is briefly described. The pseudocode
of the applied PSO-I is provided in Figure 9.

Fig. 9. Pseudocode for the PSO-I Algorithm (Shi and Eberhart, 1998)

PSO is initialized with a group of random particles and then search for optima by updating
each generation. In each iteration, particles are updated by following two best values. The
first one is the location of the best solution a particle has achieved so far which referred it as
pBest. Another best value is the location of the best solution in all the population has
achieved so far. This value is called gBest (Shi and Eberhart, 1998). Equation (19) calculates a
new velocity for each particle as follows.

1 2() () () ()id id id id nd idV w V c Rand pBest x c rand nBest x         
(19)

Where ()Rand and ()rand are two random numbers independently generated. 1c and

2c are two learning factors, which control the influence of pBest and nBest on the search
process. The global exploration and local exploitation abilities of particle swarm are
balanced by using the inertia weight, w . Particles' velocities are bounded to a maximum
velocity maxV for managing the global exploration ability of PSO (Shi and Eberhart, 1998).

Equation (20) updates each particle's position (idx) in the solution hyperspace.

id id idx x V 
(20)

5.1.3 PSO-II (Constriction algorithm)
In this section, the structure of PSO-II (constriction algorithm) is expressed in a few words.
Also the structure of PSO-II is similar to PSO-I (as illustrated in Figure 4), but in PSO-II the
velocity for each particle is calculated according to equation (21) (Engelbrecht, 2005).
    1 2id id id id nd idV V pBest x nBest x         (21)

Where

Initialize the particle population randomly
Do

Calculate fitness values of each particle
Update pBest if the current fitness value is better than pBest
Determine nBest for each particle: choose the particle with the best
fitness value of all the neighbors as the nBest
For each particle

Calculate particle velocity according to (19)
Update particle position according to (20)

While maximum iterations or minimum criteria is not attained

Swarm Robotics, From Biology to Robotics40

 
2

2 4
k

  


  

(22)

With

1 2    (23)

1 1 ()c Rand   (24)

2 2 ()c rand   (25)

Equation (22) is employed by considering the constraints that 4  and  0,1k . By

employing the constriction approach under above mentioned constraints, convergence of
the swarm to a stable point is guaranteed. The exploration and exploitation abilities of the
algorithm are controlled by the parameter of equation (22): k (Engelbrecht, 2005).

Small-sized problem Large-sized problem

No. Of
Parts

Problem
Number

Problem
Condition No. Of Parts Problem

Number
Problem

Condition
5

1 iii cba 
50

22 iii cba 

2 iii bca  23 iii bca 

3 iii cab  24 iii cab 

4 iii acb  25 iii acb 

5 iii bac  26 iii bac 

6 iii abc  27 iii abc 

7 Unconditional
case 28 Uncondition

al case
10

8 iii cba 
75

29 iii cba 

9 iii bca  30 iii bca 

10 iii cab  31 iii cab 

11 iii acb  32 iii acb 

12 iii bac  33 iii bac 

13 iii abc  34 iii abc 

14 Unconditional
case 35 Uncondition

al case
15

15 iii cba 
100

36 iii cba 

16 iii bca  37 iii bca 

17 iii cab  38 iii cab 

18 iii acb  39 iii acb 

19 iii bac  40 iii bac 

20 iii abc  41 iii abc 

21 Unconditional
case 42 Uncondition

al case
Table 1. Problem inctances

5.2 Test Problems
To validate the proposed model and the proposed algorithm, various test problems are
examined. The experiments are implemented in two folds: first, for small-sized problems,
the other for large-sized ones. For both of these experiments, the values of  and  are
equal to 1; the processing time for all parts on the all machine are uniformly generated in
range [10, 100]. The problem instances are randomly generated as Table 1.

5.3 Parameters selection
For tuning the algorithms, extensive experiments were accomplished with different sets of
parameters. In this section, we only summarize the most significant findings:
Genetic algorithm
No of Generation, Population Size, Crossover Rate (Linear order Crossover) and Mutation
Rate (Inversion Mutation) for the small-sized problems were set to 50, 50, 1.0, and 0.2,
respectively; and for the large-sized problems were set to 100, 100, 1.0 and 0.2, respectively.
PSO-I algorithm
No of Generation, Swarm Size, Learning factors (1c and 2c), and maxV for the small-sized
problems were set to 50, 50, 2, 2, and 3, respectively; and for the large-sized problems were
set to 100, 100, 2, 2, and 3. The inertia weight for all problem inctances was set to 1.4 that
linearly decreases to 0.9 in each iteration.
PSO-II algorithm

A New Hybrid Particle Swarm Optimization Algorithm to 	
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 41

 
2

2 4
k

  


  

(22)

With

1 2    (23)

1 1 ()c Rand   (24)

2 2 ()c rand   (25)

Equation (22) is employed by considering the constraints that 4  and  0,1k . By

employing the constriction approach under above mentioned constraints, convergence of
the swarm to a stable point is guaranteed. The exploration and exploitation abilities of the
algorithm are controlled by the parameter of equation (22): k (Engelbrecht, 2005).

Small-sized problem Large-sized problem

No. Of
Parts

Problem
Number

Problem
Condition No. Of Parts Problem

Number
Problem

Condition
5

1 iii cba 
50

22 iii cba 

2 iii bca  23 iii bca 

3 iii cab  24 iii cab 

4 iii acb  25 iii acb 

5 iii bac  26 iii bac 

6 iii abc  27 iii abc 

7 Unconditional
case 28 Uncondition

al case
10

8 iii cba 
75

29 iii cba 

9 iii bca  30 iii bca 

10 iii cab  31 iii cab 

11 iii acb  32 iii acb 

12 iii bac  33 iii bac 

13 iii abc  34 iii abc 

14 Unconditional
case 35 Uncondition

al case
15

15 iii cba 
100

36 iii cba 

16 iii bca  37 iii bca 

17 iii cab  38 iii cab 

18 iii acb  39 iii acb 

19 iii bac  40 iii bac 

20 iii abc  41 iii abc 

21 Unconditional
case 42 Uncondition

al case
Table 1. Problem inctances

5.2 Test Problems
To validate the proposed model and the proposed algorithm, various test problems are
examined. The experiments are implemented in two folds: first, for small-sized problems,
the other for large-sized ones. For both of these experiments, the values of  and  are
equal to 1; the processing time for all parts on the all machine are uniformly generated in
range [10, 100]. The problem instances are randomly generated as Table 1.

5.3 Parameters selection
For tuning the algorithms, extensive experiments were accomplished with different sets of
parameters. In this section, we only summarize the most significant findings:
Genetic algorithm
No of Generation, Population Size, Crossover Rate (Linear order Crossover) and Mutation
Rate (Inversion Mutation) for the small-sized problems were set to 50, 50, 1.0, and 0.2,
respectively; and for the large-sized problems were set to 100, 100, 1.0 and 0.2, respectively.
PSO-I algorithm
No of Generation, Swarm Size, Learning factors (1c and 2c), and maxV for the small-sized
problems were set to 50, 50, 2, 2, and 3, respectively; and for the large-sized problems were
set to 100, 100, 2, 2, and 3. The inertia weight for all problem inctances was set to 1.4 that
linearly decreases to 0.9 in each iteration.
PSO-II algorithm

Swarm Robotics, From Biology to Robotics42

No of Generation, Swarm Size, Learning factors (1c and 2c), and maxV for the small-sized
problems were set to 50, 50, 2, 2, and 3, respectively; and for the large-sized problems were
set to 100, 100, 2, 2, and 3. For all problem inctances, k was set to 0.5.
HPSO algorithm
No of Generation, Swarm Size, Learning factors (1c and 2c), and maxV for the small-sized
problems were set to 50, 50, 2, 2, and 5, respectively; and for the large-sized problems were
set to 100, 100, 2, 2, and 5, respectively. Mutation Rate, Best Set size, Clone size, and F for all
problem inctances were set to 0.1, 7, 5, and 3, respectively. The inertia weight for all
problem inctances was set to 1.4 that linearly decreases to 0.9 in each iteration.

5.4 Numerical results
In this section, the proposed HPSO is applied to the test problems, and its performance is
compared with above mentioned benchmark algorithms. Each algorithm was executed for
15 times and the mean results were calculated. The numerical results for various test
problems are presented in Tables 2 and 3.

Pr
ob

le
m

no

.

Lo
ng

o
8.

0
G

A

PS
O

-I

PS
O

-II

H
PS

O

O
FV

a
Ti

m
e

O
FV

Ti

m
e

O
FV

Ti

m
e

O
FV

Ti

m
e

O
FV

Ti

m
e

A
ve

.
ST

D

A
ve

.
ST

D

A
ve

.
ST

D

A
ve

.
ST

D

1
48

3
<1

48

3
0

<1

48
3

0
<1

48

3
0

<1

48
3

0
<1

2

43
5

<1

43
5

0
<1

43

5
0

<1

43
5

0
<1

43

5
0

<1

3
36

3
<1

36

3
0

<1

36
3

0
<1

36

3
0

<1

36
3

0
<1

4

45
9

<1

45
9

0
<1

45

9
0

<1

45
9

0
<1

45

9
0

<1

5
45

4
<1

45

8
0

<1

45
8

0
<1

45

8
0

<1

45
8

0
<1

6

40
4

<1

40
4

0
<1

40

4
0

<1

40
4

0
<1

40

4
0

<1

7
32

1
<1

32

3
0

<1

32
3

0
<1

32

3
0

<1

32
3

0
<1

8

75
4

1
75

4
0

<1

75
4.

1
0.

3
1

75
4

0
<1

75

4
0

1.
4

9
76

3
1

76
3

0
<1

76

3
0

1
76

3
0

<1

76
3

0
1.

4
10

91

0
<1

91

0
0

<1

91
0

0
1

91
0

0
<1

91

0
0

1.
6

11

82
5

1
82

5
0

<1

82
5

0
1

82
5

0
<1

82

5
0

1.
4

12

90
7

<1

90
7

0
<1

90

7
0

1
90

7
0

<1

90
7

0
1.

4
13

75

3
<1

75

3
0

<1

75
3

0
1

75
3

0
<1

75

3
0

1.
6

14

73
9

13
2

74
1.

9
1.

9
<1

74

6.
5

6
1

74
4.

4
6.

1
<1

74

1.
4

2.
4

1.
4

15

13
12

<1

13

12

0
1

13
12

0

1
13

12

0
<1

13

12

0
2.

8
16

12

72

<1

12
72

.1

0.
3

1
12

73
.4

1.

5
1

12
74

.2

1.
9

<1

12
72

0

2.
8

17

12
12

1

12
12

0

1
12

12
.7

0.

6
1

12
13

.6

1.
5

<1

12
12

0

2.
8

18

13
52

<1

13

52

0
1

13
52

0

1
13

52

0
<1

13

52

0
2.

8
19

13

31

<1

13
31

0

1
13

31

0
1

13
31

0

1
13

31

0
2.

8
20

12

22

1
12

22

0
1

12
26

.7

4.
4

1
12

24

2.
5

<1

12
22

0

2.
8

21

12
60

72

00
c

11
45

.9

18
.9

1

11
81

.5

13
.1

1

11
78

13

.9

<1

11
23

.6

14
.1

2.

8
a

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

b

St
an

da
rd

 D
ev

ia
tio

n
c

de
no

te
s

th
at

 th
e

Li
ng

o
in

te
rr

up
te

d
af

te
r t

hi
s

tim
e

an
d

th
e

be
st

 a
ch

ie
ve

d
va

lu
e

w
as

 re
po

rt
ed

Ta

bl
e

2.
 C

om
pu

ta
tio

na
l r

es
ul

ts
 fo

r s
m

al
l-s

iz
ed

 te
st

 p
ro

bl
em

s

A New Hybrid Particle Swarm Optimization Algorithm to 	
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 43

No of Generation, Swarm Size, Learning factors (1c and 2c), and maxV for the small-sized
problems were set to 50, 50, 2, 2, and 3, respectively; and for the large-sized problems were
set to 100, 100, 2, 2, and 3. For all problem inctances, k was set to 0.5.
HPSO algorithm
No of Generation, Swarm Size, Learning factors (1c and 2c), and maxV for the small-sized
problems were set to 50, 50, 2, 2, and 5, respectively; and for the large-sized problems were
set to 100, 100, 2, 2, and 5, respectively. Mutation Rate, Best Set size, Clone size, and F for all
problem inctances were set to 0.1, 7, 5, and 3, respectively. The inertia weight for all
problem inctances was set to 1.4 that linearly decreases to 0.9 in each iteration.

5.4 Numerical results
In this section, the proposed HPSO is applied to the test problems, and its performance is
compared with above mentioned benchmark algorithms. Each algorithm was executed for
15 times and the mean results were calculated. The numerical results for various test
problems are presented in Tables 2 and 3.

Pr
ob

le
m

no

.

Lo
ng

o
8.

0
G

A

PS
O

-I

PS
O

-II

H
PS

O

O
FV

a
Ti

m
e

O
FV

Ti

m
e

O
FV

Ti

m
e

O
FV

Ti

m
e

O
FV

Ti

m
e

A
ve

.
ST

D

A
ve

.
ST

D

A
ve

.
ST

D

A
ve

.
ST

D

1
48

3
<1

48

3
0

<1

48
3

0
<1

48

3
0

<1

48
3

0
<1

2

43
5

<1

43
5

0
<1

43

5
0

<1

43
5

0
<1

43

5
0

<1

3
36

3
<1

36

3
0

<1

36
3

0
<1

36

3
0

<1

36
3

0
<1

4

45
9

<1

45
9

0
<1

45

9
0

<1

45
9

0
<1

45

9
0

<1

5
45

4
<1

45

8
0

<1

45
8

0
<1

45

8
0

<1

45
8

0
<1

6

40
4

<1

40
4

0
<1

40

4
0

<1

40
4

0
<1

40

4
0

<1

7
32

1
<1

32

3
0

<1

32
3

0
<1

32

3
0

<1

32
3

0
<1

8

75
4

1
75

4
0

<1

75
4.

1
0.

3
1

75
4

0
<1

75

4
0

1.
4

9
76

3
1

76
3

0
<1

76

3
0

1
76

3
0

<1

76
3

0
1.

4
10

91

0
<1

91

0
0

<1

91
0

0
1

91
0

0
<1

91

0
0

1.
6

11

82
5

1
82

5
0

<1

82
5

0
1

82
5

0
<1

82

5
0

1.
4

12

90
7

<1

90
7

0
<1

90

7
0

1
90

7
0

<1

90
7

0
1.

4
13

75

3
<1

75

3
0

<1

75
3

0
1

75
3

0
<1

75

3
0

1.
6

14

73
9

13
2

74
1.

9
1.

9
<1

74

6.
5

6
1

74
4.

4
6.

1
<1

74

1.
4

2.
4

1.
4

15

13
12

<1

13

12

0
1

13
12

0

1
13

12

0
<1

13

12

0
2.

8
16

12

72

<1

12
72

.1

0.
3

1
12

73
.4

1.

5
1

12
74

.2

1.
9

<1

12
72

0

2.
8

17

12
12

1

12
12

0

1
12

12
.7

0.

6
1

12
13

.6

1.
5

<1

12
12

0

2.
8

18

13
52

<1

13

52

0
1

13
52

0

1
13

52

0
<1

13

52

0
2.

8
19

13

31

<1

13
31

0

1
13

31

0
1

13
31

0

1
13

31

0
2.

8
20

12

22

1
12

22

0
1

12
26

.7

4.
4

1
12

24

2.
5

<1

12
22

0

2.
8

21

12
60

72

00
c

11
45

.9

18
.9

1

11
81

.5

13
.1

1

11
78

13

.9

<1

11
23

.6

14
.1

2.

8
a

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

b

St
an

da
rd

 D
ev

ia
tio

n
c

de
no

te
s

th
at

 th
e

Li
ng

o
in

te
rr

up
te

d
af

te
r t

hi
s

tim
e

an
d

th
e

be
st

 a
ch

ie
ve

d
va

lu
e

w
as

 re
po

rt
ed

Ta

bl
e

2.
 C

om
pu

ta
tio

na
l r

es
ul

ts
 fo

r s
m

al
l-s

iz
ed

 te
st

 p
ro

bl
em

s

Swarm Robotics, From Biology to Robotics44

Pr
ob

le
m

no

.

G
A

PS

O
-I

PS

O
-II

H

PS
O

O

FV

Ti
m

e
O

FV

Ti
m

e
O

FV

Ti
m

e
O

FV

Ti
m

e
A

ve
.

ST
D

A

ve
.

ST
D

A

ve
.

ST
D

A

ve
.

ST
D

22

44
14

0

12
.6

44

27
.2

4.

5
14

.5

44
24

.6

6.
0

14
.2

44

04
.6

1.

3
98

23

42

27
.1

0.

3
12

.2

42
39

.1

7.
8

14
.5

42

38
.4

7.

4
14

.1

42
07

0

98
.2

24

39

97

0.
2

12
.5

40

26
.9

11

.3

14
.5

40

26
.8

10

.7

14
.2

39

70
.4

4.

7
98

.6

25

43
14

0

13
.1

43

34
.3

6.

8
14

.5

43
32

.6

5.
2

14
.2

43

14

0
99

.2

26

42
83

.6

2.
3

12
.1

42

95
.1

8.

5
14

.5

42
89

.8

3.
6

14
.2

42

57
.2

4.

8
99

.2

27

43
60

0

13

43
64

.3

2.
4

14
.5

43

64
.4

2.

4
14

.1

43
60

0

99

28

34
05

.4

37
.1

11

.2

35
83

.1

23
.1

14

.5

36
15

.4

26
.2

14

.2

33
85

.8

86
.1

99

29

62

87
.8

1.

2
19

.5

63
47

14

.6

24
.9

63

45
.4

13

.7

24
.8

62

39
.8

20

.1

21
5.

4
30

63

60
.3

0.

7
19

.3

64
37

.8

8.
7

24
.9

64

46
.2

13

.8

24
.5

63

60
.6

1.

3
21

5.
2

31

63
69

.1

0.
5

19
.9

64

69
.7

9.

6
25

.1

64
71

.4

13
.5

24

.5

63
74

.6

12
.0

21

5.
2

32

63
75

.5

0.
7

19
.5

64

31
.6

15

.1

25
.3

64

46
.4

10

.0

24
.5

62

94
.4

37

.3

21
5.

2
33

67

16
.1

1.

9
19

.3

67
64

.1

8.
6

25

67
61

.4

7.
3

24
.8

67

01
.8

13

.4

21
5.

2
34

63

57
.1

3.

9
19

.9

64
19

.4

7.
5

25
.1

64

23
.6

10

.8

24
.8

63

29
.4

8.

2
21

5.
6

35

58
43

.6

45
.1

18

.7

61
73

.3

25

25
.1

61

81
.8

35

.4

24
.5

57

51
.6

16

7.
4

21
5.

6
36

88

32

0.
7

29
.5

88

89
.4

7.

6
37

.9

88
87

.8

16
.3

37

88

12
.4

0.

9
39

8.
8

37

86
93

.5

7.
3

28
.1

87

28
.5

17

37

.8

87
47

.8

11
.8

35

.9

86
22

.6

19
.1

39

8.
4

38

87
35

.9

3.
5

27
.8

88

36
.9

20

.6

37
.8

88

42
.2

17

.0

35
.8

86

73
.2

50

.8

40
0

39

86
63

.3

2.
8

28
.7

88

61
.9

11

.5

37
.9

86

74
.6

17

.6

36

85
85

.2

40
.1

39

9.
6

40

81
25

.8

3.
9

27
.8

82

58
.3

15

.3

37
.9

82

96
.4

11

.9

34
.3

81

11
.6

7.

8
40

0.
6

41

85
88

.1

0.
3

29
.6

86

45
.7

11

.3

38
.1

86

54

14
.6

35

.3

85
05

.0

37
.5

39

8.
2

42

78
37

.9

75
.7

27

.8

81
13

.7

30
.3

38

.1

81
63

36

.9

36
.1

75

45
.8

97

.4

39
9.

2
Ta

bl
e

3.
 C

om
pu

ta
tio

na
l r

es
ul

ts
 fo

r l
ar

ge
-s

iz
ed

 te
st

 p
ro

bl
em

s

As shown in Tables 2 and 3, the proposed HPSO is superior to the benchmark algorithms in
the most test problems.
As illustrated in Tables 2 and 3, the proposed HPSO consumes more computational time
than the benchmark algorithms. Because of the structure of the proposed HPSO, it can
search smartly more regions of the search space that results in better solutions. Thus, this
higher value of computational time is reasonable.

6. Conclusions

This chapter developed a new mathematical model for a cyclic multiple-part type three-

machine robotic cell problem under 6S robot movement policy that minimizes the cycle
time. The developed model is based on Petri nets and provides a new method to calculate
cycle times by considering waiting times. It was proved that calculating cycle time under

6S policy is unary NP-complete. Hence, this chapter proposed a new hybrid particle
swarm optimization (HPSO) algorithm to tackle the problem. To validate the developed
model and solution algorithm, various test problems with different sizes were randomly
generated and the performance of the HPSO was compared with three benchmark
metaheuristics: Genetic Algorithm, PSO-I (basic Particle Swarm Optimization algorithm),
and PSO-II (constriction Particle Swarm Optimization algorithm). The numerical results
showed that the proposed HPSO outperforms the benchmark algorithms in the most
problems, especially for large-sized problems.

7. References

Agnetis, A. (2000). "Scheduling No-Wait Robotic Cells with Two and Three Machines."
European Journal of Operational Research 123: 303-314.

Agnetis, A. and D. Pacciarelli (2000). "Part Sequencing in Three-Machine No-Wait Robotic
Cells." Operations Research Letters 27: 185-192.

Asfahl, C. R. (1992). Robots and Manufacturing Automation. New York, Wiley.
Bagchi, T. P., J. N. D. Gupta and C. Sriskandarajah (2006). "A Review of Tsp Based

Approaches for Flow Shop Scheduling." European Journal of Operational Research
169: 816- 854.

Brauner, N. and G. Finke (1999). "On a Conjecture About Robotic Cells: New Simplified
Proof for the Threemachine Case." INFOR 37(1): 20-36.

Crama, Y., V. Kats, J. v. d. Klundert and E. Levner (2000). "Cyclic Scheduling in Robotic
Flow Shops." Annals of Operations Research: Mathematics of Industrial Systems 96:
97-124.

Crama, y. and v. d. Klundert (1999). "Cyclic Scheduling in 3-Machine Robotic Flow Shops."
Journal of Scheduling 2: 35-54.

Dawande, M., H. N. Geismar, S. P. Sethi and C. Sriskandarajah (2005). "Sequencing and
Scheduling in Robotic Cells:Recent Developments." Journal of Scheduling 8: 387-
426.

Drobouchevitch, I. G., S. P. Sethi and C. Sriskandarajah (2006). "Scheduling Dual Gripper
Robotic Cell Oneunit Cycles." European Journal of Operational Research 171: 598-
631.

A New Hybrid Particle Swarm Optimization Algorithm to 	
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 45

Pr
ob

le
m

no

.

G
A

PS

O
-I

PS

O
-II

H

PS
O

O

FV

Ti
m

e
O

FV

Ti
m

e
O

FV

Ti
m

e
O

FV

Ti
m

e
A

ve
.

ST
D

A

ve
.

ST
D

A

ve
.

ST
D

A

ve
.

ST
D

22

44
14

0

12
.6

44

27
.2

4.

5
14

.5

44
24

.6

6.
0

14
.2

44

04
.6

1.

3
98

23

42

27
.1

0.

3
12

.2

42
39

.1

7.
8

14
.5

42

38
.4

7.

4
14

.1

42
07

0

98
.2

24

39

97

0.
2

12
.5

40

26
.9

11

.3

14
.5

40

26
.8

10

.7

14
.2

39

70
.4

4.

7
98

.6

25

43
14

0

13
.1

43

34
.3

6.

8
14

.5

43
32

.6

5.
2

14
.2

43

14

0
99

.2

26

42
83

.6

2.
3

12
.1

42

95
.1

8.

5
14

.5

42
89

.8

3.
6

14
.2

42

57
.2

4.

8
99

.2

27

43
60

0

13

43
64

.3

2.
4

14
.5

43

64
.4

2.

4
14

.1

43
60

0

99

28

34
05

.4

37
.1

11

.2

35
83

.1

23
.1

14

.5

36
15

.4

26
.2

14

.2

33
85

.8

86
.1

99

29

62

87
.8

1.

2
19

.5

63
47

14

.6

24
.9

63

45
.4

13

.7

24
.8

62

39
.8

20

.1

21
5.

4
30

63

60
.3

0.

7
19

.3

64
37

.8

8.
7

24
.9

64

46
.2

13

.8

24
.5

63

60
.6

1.

3
21

5.
2

31

63
69

.1

0.
5

19
.9

64

69
.7

9.

6
25

.1

64
71

.4

13
.5

24

.5

63
74

.6

12
.0

21

5.
2

32

63
75

.5

0.
7

19
.5

64

31
.6

15

.1

25
.3

64

46
.4

10

.0

24
.5

62

94
.4

37

.3

21
5.

2
33

67

16
.1

1.

9
19

.3

67
64

.1

8.
6

25

67
61

.4

7.
3

24
.8

67

01
.8

13

.4

21
5.

2
34

63

57
.1

3.

9
19

.9

64
19

.4

7.
5

25
.1

64

23
.6

10

.8

24
.8

63

29
.4

8.

2
21

5.
6

35

58
43

.6

45
.1

18

.7

61
73

.3

25

25
.1

61

81
.8

35

.4

24
.5

57

51
.6

16

7.
4

21
5.

6
36

88

32

0.
7

29
.5

88

89
.4

7.

6
37

.9

88
87

.8

16
.3

37

88

12
.4

0.

9
39

8.
8

37

86
93

.5

7.
3

28
.1

87

28
.5

17

37

.8

87
47

.8

11
.8

35

.9

86
22

.6

19
.1

39

8.
4

38

87
35

.9

3.
5

27
.8

88

36
.9

20

.6

37
.8

88

42
.2

17

.0

35
.8

86

73
.2

50

.8

40
0

39

86
63

.3

2.
8

28
.7

88

61
.9

11

.5

37
.9

86

74
.6

17

.6

36

85
85

.2

40
.1

39

9.
6

40

81
25

.8

3.
9

27
.8

82

58
.3

15

.3

37
.9

82

96
.4

11

.9

34
.3

81

11
.6

7.

8
40

0.
6

41

85
88

.1

0.
3

29
.6

86

45
.7

11

.3

38
.1

86

54

14
.6

35

.3

85
05

.0

37
.5

39

8.
2

42

78
37

.9

75
.7

27

.8

81
13

.7

30
.3

38

.1

81
63

36

.9

36
.1

75

45
.8

97

.4

39
9.

2
Ta

bl
e

3.
 C

om
pu

ta
tio

na
l r

es
ul

ts
 fo

r l
ar

ge
-s

iz
ed

 te
st

 p
ro

bl
em

s

As shown in Tables 2 and 3, the proposed HPSO is superior to the benchmark algorithms in
the most test problems.
As illustrated in Tables 2 and 3, the proposed HPSO consumes more computational time
than the benchmark algorithms. Because of the structure of the proposed HPSO, it can
search smartly more regions of the search space that results in better solutions. Thus, this
higher value of computational time is reasonable.

6. Conclusions

This chapter developed a new mathematical model for a cyclic multiple-part type three-

machine robotic cell problem under 6S robot movement policy that minimizes the cycle
time. The developed model is based on Petri nets and provides a new method to calculate
cycle times by considering waiting times. It was proved that calculating cycle time under

6S policy is unary NP-complete. Hence, this chapter proposed a new hybrid particle
swarm optimization (HPSO) algorithm to tackle the problem. To validate the developed
model and solution algorithm, various test problems with different sizes were randomly
generated and the performance of the HPSO was compared with three benchmark
metaheuristics: Genetic Algorithm, PSO-I (basic Particle Swarm Optimization algorithm),
and PSO-II (constriction Particle Swarm Optimization algorithm). The numerical results
showed that the proposed HPSO outperforms the benchmark algorithms in the most
problems, especially for large-sized problems.

7. References

Agnetis, A. (2000). "Scheduling No-Wait Robotic Cells with Two and Three Machines."
European Journal of Operational Research 123: 303-314.

Agnetis, A. and D. Pacciarelli (2000). "Part Sequencing in Three-Machine No-Wait Robotic
Cells." Operations Research Letters 27: 185-192.

Asfahl, C. R. (1992). Robots and Manufacturing Automation. New York, Wiley.
Bagchi, T. P., J. N. D. Gupta and C. Sriskandarajah (2006). "A Review of Tsp Based

Approaches for Flow Shop Scheduling." European Journal of Operational Research
169: 816- 854.

Brauner, N. and G. Finke (1999). "On a Conjecture About Robotic Cells: New Simplified
Proof for the Threemachine Case." INFOR 37(1): 20-36.

Crama, Y., V. Kats, J. v. d. Klundert and E. Levner (2000). "Cyclic Scheduling in Robotic
Flow Shops." Annals of Operations Research: Mathematics of Industrial Systems 96:
97-124.

Crama, y. and v. d. Klundert (1999). "Cyclic Scheduling in 3-Machine Robotic Flow Shops."
Journal of Scheduling 2: 35-54.

Dawande, M., H. N. Geismar, S. P. Sethi and C. Sriskandarajah (2005). "Sequencing and
Scheduling in Robotic Cells:Recent Developments." Journal of Scheduling 8: 387-
426.

Drobouchevitch, I. G., S. P. Sethi and C. Sriskandarajah (2006). "Scheduling Dual Gripper
Robotic Cell Oneunit Cycles." European Journal of Operational Research 171: 598-
631.

Swarm Robotics, From Biology to Robotics46

Engelbrecht, A. P. (2005). Fundamentals of Computational Swarm Intelligence. South Africa,
John Wiley & Sons, Ltd.

Gen, M. and R. Cheng (1997). Genetic Algorithms and Engineering Design. New York,
Wiley.

Gultekin, H., M. S. Akturk and O. E. Karasan (2006). "Cyclic Scheduling of a 2-Machine
Robotic Cell with Tooling Constraints." European Journal of Operational Research
174: 777–796.

Gultekin, H., M. S. Akturk and O. E. Karasan (2007). "Scheduling in a Three-Machine
Robotic Flexible Manufacturing Cell." Computers & Operations Research 34: 2463 –
2477.

Hall, N. G., H. Kamoun and C. Sriskandarajah (1997). "Scheduling in Robotic Cells:
Classification, Two and Three Machine Cells." Operations Research 45: 421-439.

Hall, N. G., H. Kamoun and C. Sriskandarajah (1998). "Scheduling in Robotic Cells:
Complexity and Steady State Anhlysis." European Journal of Operational Research
109: 43-65.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. MA,
MIT Press.

Hu, X., Y. Shi and R. Eberhart (2004). Recent Advances in Particle Swarm. Congress on
Evolutionary Computation, CEC2004 IEEE.

Kennedy, J. and R. Eberhart (1995). Particle Swarm Optimization. Proceedings of the IEEE
international conference on neural networks (Perth, Australia), NJ: IEEE Service
Center.

Liao, C.-J., C.-T. Tseng and P. Luarn (2007). "A Discrete Version of Particle Swarm
Optimization for Flowshop Scheduling Problems." Computers & Operations
Research 34(10): 3099-3111.

Maggot, J. (1984). "Performance Evaluation of Concurrent Systems Using Petri Nets."
INFORM PROCESSING LETT 18(1): 7-13.

Sethi, S. P., C. Sriskandarajah, G. Sorger, J. Blazewicz and W. Kubiak (1992). "Sequencing of
Parts and Robot Moves in a Robotic Cell." International Journal of Flexible
Manufacturing Systems 4: 331-358.

Shi, Y. and R. Eberhart (1998). A Modified Particle Swarm Optimizer. Proceedings of the
IEEE international conference on evolutionary computation, Piscataway, NJ: IEEE
Press.

Sriskandarajah, C., N. G. Hall, H. Kamoun and H. Wan (1998). "Scheduling Large Robotic
Cells without Buffers." Annals of Operations Research: Mathematics of Industrial
Systems 76: 287–321.

Comparison of Swarm Optimization and Genetic Algorithm for Mobile Robot Navigation 47

Comparison of Swarm Optimization and Genetic Algorithm for Mobile
Robot Navigation

Petar Ćurković, Bojan Jerbić and Tomislav Stipančić

X

Comparison of Swarm Optimization and Genetic
Algorithm for Mobile Robot Navigation

Petar Ćurković, Bojan Jerbić and Tomislav Stipančić

University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture
Croatia

1. Introduction

Swarm optimization, swarm intelligence and swarm robotics are the fields considering a
group of relatively simple individuals able cooperate to perform complex tasks, in
decentralized manner. The inspiration is found in the first line within animal societies, such
as birds, ants and bees. Social insects exhibit successful behavior in performing complex
tasks on the level of the group, and are able to eliminate noise, errors, failure of swarm
members. These swarms are robust, able to adapt to constant environmental changes in
conditions of limited communications among members and lack of global data. In the
context of swarm optimization, the example of Dorigo’s “Ant Colony Optimization “ (ACO)
and Kennedy ad Eberhart “Particle swarm Optimization” (PSO) are most known examples
of applying swarm-based concepts to development of optimization algorithms able to cope
with hard optimization problems. These algorithms are justifiably called swarm algorithms,
because they are run asynchronously and in decentralized manner (Benni, 2004). They also
mimic the stigmergic (communication by dynamically changing environment) behavior of
swarm of insects.
PSO is inspired by flocking behavior of the birds searching for food. Although PSO shares
many common attributes with the field of Genetic Algorithms (GA), such as stochastic
nature, population of solution candidates, PSO methods, unlike GA use a kind of
cooperation between the particles to drive the search process. PSO methods have no
evolutionary operators like crossover and mutation. Each particle keeps track of its own best
solution, and the best solution found so far by the swarm. It means that the particles posses
own and collective memory, and are able to communicate. The difference between the
global best and personal best is used to direct particles in the search space.
ACO employs the search process that is inspired by the collective behavior of trail deposit
and follow-up, which is observed within real ant colonies. A colony of simple agents, the
ants, communicates indirectly via dynamic modifications of their environment (trails of
pheromones) and thus proposes solution to a problem, based their collective experience.
Honey Bees Mating Algorithm (HBMA) can also be observed as a typical swarm based
approach to optimization. The algorithm is inspired by behavior of eusocial insects, which
are characterized by three main features: cooperation among adults in brood care and nest
construction, overlapping of at least two generations, and reproductive division of labour,

3

Swarm Robotics, From Biology to Robotics48

respectively. In a recent work, Abbas proposed an optimization algorithm based on honey-
bees mating process (Abbas, 2001; Abbas, 2002).
The path planning problem of a mobile robot is to find a safe and efficient path for the robot,
given a start location, a goal location and a set of obstacles distributed in a workspace
(Latombe, 1991.). The robot can go from the start location to the goal location without
colliding with any obstacle along the path. In addition to the fundamental problem, we also
try to find a way to optimize the plan, i.e. to minimize the time required or distance
travelled (Du et al., 2005; Sadati and Taheri,2002; Ramakrishnan and Zein-Sabatto, 2002).
The popular methods are the visibility graph algorithm and the artificial potential field
algorithm. However, the former lacks flexibility and the latter is prone to suffer from
difficulties with local minima (Alexopoulos and Griffin, 1992; Chen and Liu, 1997). Neural
network and genetic algorithm have been shown to be very efficient in robot navigation
(Zarate et al., 2002). General path planning methods based on neural network always
establish the neural network model for a robot from the start position to the goal position
and entail much computational time. The input data of the model are the previous distance
values and position or direction from the sensors. The output data are the next position or
direction by self-learning process.
 Genetic algorithm is multisearch algorithm based on the principles of natural genetics and
natural selection (Goldberg, 1989). Genetic algorithm provides a robust search in complex
spaces and is usually computationally less expensive than other search algorithms. Genetic
algorithm searches the solution from a population of points and is less likely to be trapped
in a local optimum. Many results in the literature show the good application of genetic
algorithm in robot path planning (Khoogar and Parker, 1991; Ram et al., 1994).
In this chapter, concept of swarm intelligence, as an optimization technique is proposed for
finding collision free paths in work space containing differently shaped and distributed
obstacles. Thus, the problem of path planning is considered as an optimization problem,
whereat collision free paths receive higher fitness values relative to those resulting in
collision with an obstacle. Performance of HBMA algorithm is compared to the performance
of a GA developed for the same purpose on two examples, Diophantine equation problem
and path planning problem.
Organization of the chapter is as follows: in section 2 we briefly describe colony of Honey
Bees, as they are in nature. Section 3 describes proposed abstraction and simplification and
describes core elements of the algorithm. In section 4 and 5 HBMA is compared with GA for
the first test case, Diophantine equation, and the performances of both algorithms in terms
of completeness of the solution and speed of the convergence are discussed. In sections 5
and 6 both algorithms are applied to the second test case, path planning. We conclude with
section 7 by finally comparing both algorithms and proposing further possibilities of
improving and testing of the described algorithms.

2. Structure of a Honey-Bee Colony

A honey-bee colony typically consists of a single egg laying queen, usually from zero to
several thousands drones and 10000 to 60000 workers. Drones are the fathers of the colony.
They are haploid and act to amplify their mother’s genome without alteration of their
genetic composition except through mutation. Workers specialize in brood care and
sometimes lay eggs. Broods arise from either fertilized or unfertilized eggs, whereby the

former represent potential queens or workers, and the latter represent prospective drones.
The mating process occurs during mating-flights far from the nest. A mating flight starts
with the dance where the drones follow the queen and mate with her in the air. In a typical
mating-flight, each queen mates with seven to twenty drones. In each mating, sperm reaches
the sprematheca and accumulates there to form the genetic pool of the colony. Each time a
queen lays fertilized eggs, she retrieves at random a mixture of the sperms accumulated in
the spermatheca to fertilize the egg.

3. Artificial Model

The main processes of the algorithm are: mating flight of the queen with the drones, creation
of new broods by the queen, improvement of the broods by workers, adaptation of workers
fitness, replacement of the queen with the fitter brood. The mating flight may be considered
as a set of transitions in a state-space (the environment) where the queen moves between the
different states in some speed and mates with the drone encountered at each state
probabilistically, according to (1).
At the start of the flight, the queen is initialized with some energy content, typically this is a
random value from range (0,1] and returns to her nest when energy content equals to zero
or when her spermatheca is full. In developing the algorithm, the functionality of workers is
restricted to brood care, and therefore, each worker may be represented as a different
heuristic which acts to improve a set of broods.
A drone mates with a queen probabilistically according to annealing function:

 
 
 tS
f

eDQprob




, (1)

Where prob(Q,D) represents the probability of successful mating, i.e. the probability of
adding drone’s D sperm to queen’s Q spermatheca. Δ(f) is the absolute difference between
the fitness of the drone and the queen, and S(t) is the speed of the queen at time t.
According to defined annealing function, the probability of mating is high when either the
queen is the start of her flight, and therefore, her speed is high, or when the fitness of the
new potential drone is similar to the queen’s fitness. The main steps of the algorithm are
presented in Fig. 1.
After each transition in space, the queen’s speed S(t) and energy E(t) decay using the
following equations:

   tStS  1 (2)

     tEtE 1 (3)

Where α is a factor in range [0.5, 1] and γ is calculated according to expression:

   
M

tEt 


5.0 (4)

And M is the size of sphermatheca.

Comparison of Swarm Optimization and Genetic Algorithm for Mobile Robot Navigation 49

respectively. In a recent work, Abbas proposed an optimization algorithm based on honey-
bees mating process (Abbas, 2001; Abbas, 2002).
The path planning problem of a mobile robot is to find a safe and efficient path for the robot,
given a start location, a goal location and a set of obstacles distributed in a workspace
(Latombe, 1991.). The robot can go from the start location to the goal location without
colliding with any obstacle along the path. In addition to the fundamental problem, we also
try to find a way to optimize the plan, i.e. to minimize the time required or distance
travelled (Du et al., 2005; Sadati and Taheri,2002; Ramakrishnan and Zein-Sabatto, 2002).
The popular methods are the visibility graph algorithm and the artificial potential field
algorithm. However, the former lacks flexibility and the latter is prone to suffer from
difficulties with local minima (Alexopoulos and Griffin, 1992; Chen and Liu, 1997). Neural
network and genetic algorithm have been shown to be very efficient in robot navigation
(Zarate et al., 2002). General path planning methods based on neural network always
establish the neural network model for a robot from the start position to the goal position
and entail much computational time. The input data of the model are the previous distance
values and position or direction from the sensors. The output data are the next position or
direction by self-learning process.
 Genetic algorithm is multisearch algorithm based on the principles of natural genetics and
natural selection (Goldberg, 1989). Genetic algorithm provides a robust search in complex
spaces and is usually computationally less expensive than other search algorithms. Genetic
algorithm searches the solution from a population of points and is less likely to be trapped
in a local optimum. Many results in the literature show the good application of genetic
algorithm in robot path planning (Khoogar and Parker, 1991; Ram et al., 1994).
In this chapter, concept of swarm intelligence, as an optimization technique is proposed for
finding collision free paths in work space containing differently shaped and distributed
obstacles. Thus, the problem of path planning is considered as an optimization problem,
whereat collision free paths receive higher fitness values relative to those resulting in
collision with an obstacle. Performance of HBMA algorithm is compared to the performance
of a GA developed for the same purpose on two examples, Diophantine equation problem
and path planning problem.
Organization of the chapter is as follows: in section 2 we briefly describe colony of Honey
Bees, as they are in nature. Section 3 describes proposed abstraction and simplification and
describes core elements of the algorithm. In section 4 and 5 HBMA is compared with GA for
the first test case, Diophantine equation, and the performances of both algorithms in terms
of completeness of the solution and speed of the convergence are discussed. In sections 5
and 6 both algorithms are applied to the second test case, path planning. We conclude with
section 7 by finally comparing both algorithms and proposing further possibilities of
improving and testing of the described algorithms.

2. Structure of a Honey-Bee Colony

A honey-bee colony typically consists of a single egg laying queen, usually from zero to
several thousands drones and 10000 to 60000 workers. Drones are the fathers of the colony.
They are haploid and act to amplify their mother’s genome without alteration of their
genetic composition except through mutation. Workers specialize in brood care and
sometimes lay eggs. Broods arise from either fertilized or unfertilized eggs, whereby the

former represent potential queens or workers, and the latter represent prospective drones.
The mating process occurs during mating-flights far from the nest. A mating flight starts
with the dance where the drones follow the queen and mate with her in the air. In a typical
mating-flight, each queen mates with seven to twenty drones. In each mating, sperm reaches
the sprematheca and accumulates there to form the genetic pool of the colony. Each time a
queen lays fertilized eggs, she retrieves at random a mixture of the sperms accumulated in
the spermatheca to fertilize the egg.

3. Artificial Model

The main processes of the algorithm are: mating flight of the queen with the drones, creation
of new broods by the queen, improvement of the broods by workers, adaptation of workers
fitness, replacement of the queen with the fitter brood. The mating flight may be considered
as a set of transitions in a state-space (the environment) where the queen moves between the
different states in some speed and mates with the drone encountered at each state
probabilistically, according to (1).
At the start of the flight, the queen is initialized with some energy content, typically this is a
random value from range (0,1] and returns to her nest when energy content equals to zero
or when her spermatheca is full. In developing the algorithm, the functionality of workers is
restricted to brood care, and therefore, each worker may be represented as a different
heuristic which acts to improve a set of broods.
A drone mates with a queen probabilistically according to annealing function:

 
 
 tS
f

eDQprob




, (1)

Where prob(Q,D) represents the probability of successful mating, i.e. the probability of
adding drone’s D sperm to queen’s Q spermatheca. Δ(f) is the absolute difference between
the fitness of the drone and the queen, and S(t) is the speed of the queen at time t.
According to defined annealing function, the probability of mating is high when either the
queen is the start of her flight, and therefore, her speed is high, or when the fitness of the
new potential drone is similar to the queen’s fitness. The main steps of the algorithm are
presented in Fig. 1.
After each transition in space, the queen’s speed S(t) and energy E(t) decay using the
following equations:

   tStS  1 (2)

     tEtE 1 (3)

Where α is a factor in range [0.5, 1] and γ is calculated according to expression:

   
M

tEt 


5.0 (4)

And M is the size of sphermatheca.

Swarm Robotics, From Biology to Robotics50

Fig. 1. Flowchart of HBMA algorithm

4. Algorithm Application to Diophantine Equation

In order to perform initial test of the algorithm, we apply the HBMA to a benchmark
Diophantine problem. Diophantine equation is an algebraic function (Bull et al., 2006) which
must be solved over the integers ix  . Diophantine problems have a long pedigree in
number theory. They also constitute some of the hardest problems in modern mathematics.

Behavior and results of HBMA and GA applied to the Diophantine nonlinear equation, i.e.
Markoff equation:

 2 2 2 3x y z xyz   (5)

which has important applications in number theory and known solutions. This example is
chosen because it is known how to generate all the solutions in a cube of given size. In the
first test case, the problem is reduced to a 2D space by fixing z=433, to have a unique
solution, and finding integers that satisfy:

 2 2 2433 1299 0x y xy    (6)

with the search space highly complex in size, as presented with Fig.2.

Fig. 2. Search space for the reduced Diophantine problem

5. Results for Diophantine Equation

HBMA and GA were applied to find solutions of the described problem by searching for
values in the range  0, 400 . Both algorithms were successful finding solutions for the
problem, resulting with monotonous shape of the fitness functions, as presented with Fig. 3.
and Fig. 4.

Comparison of Swarm Optimization and Genetic Algorithm for Mobile Robot Navigation 51

Fig. 1. Flowchart of HBMA algorithm

4. Algorithm Application to Diophantine Equation

In order to perform initial test of the algorithm, we apply the HBMA to a benchmark
Diophantine problem. Diophantine equation is an algebraic function (Bull et al., 2006) which
must be solved over the integers ix  . Diophantine problems have a long pedigree in
number theory. They also constitute some of the hardest problems in modern mathematics.

Behavior and results of HBMA and GA applied to the Diophantine nonlinear equation, i.e.
Markoff equation:

 2 2 2 3x y z xyz   (5)

which has important applications in number theory and known solutions. This example is
chosen because it is known how to generate all the solutions in a cube of given size. In the
first test case, the problem is reduced to a 2D space by fixing z=433, to have a unique
solution, and finding integers that satisfy:

 2 2 2433 1299 0x y xy    (6)

with the search space highly complex in size, as presented with Fig.2.

Fig. 2. Search space for the reduced Diophantine problem

5. Results for Diophantine Equation

HBMA and GA were applied to find solutions of the described problem by searching for
values in the range  0, 400 . Both algorithms were successful finding solutions for the
problem, resulting with monotonous shape of the fitness functions, as presented with Fig. 3.
and Fig. 4.

Swarm Robotics, From Biology to Robotics52

The fitness function equals the value defined with eq. (6) and is normalized to the range
 0,1 . In other words, pairs of numbers which yield lower values of fitness function have
higher chances of survival, ideally approaching zero value for solution and termination
criteria satisfaction.

Fig. 3. Fitness value for the HBMA for Diophantine equation

Fig. 4. Fitness value for the GA for Diophantine equation

It is important to notice that performance of the HBMA depend on the depth of stochastic
search. In this example, only two workers i.e. different heuristics were included; namely,
random walk (RW) and two point crossover (2PCO). That means that in each generation of
the main loop, a number of local iterations (heuristics) take place for improvement of the
brood. In our examples, depth of the local searches is set to 100 iterations.

HBMA has implicitly included elitist function, because the queen is always represented by
the best chromosome found so far over all previous generations.
For the GA, 10% elitism is included, meaning that 10% of best chromosomes are directly
copied to the new generation, resulting with keeping of best genetic material through the
whole evolutionary search. Results and behavior of HBMA and GA are presented with
Fig.3. and Fig.4. Fitness values are normalized, and it is possible to directly compare fitness
values. In the case of HBMA, the search starts from initial value 0.45, what is likely to be the
consequence of the first worker applied to initial queen’s chromosome.

 No. of runs No. of solutions
found

Average No
of generations G

GA 30 28 340 44.6
HBMA 30 30 22.9 4.6

Table 1. GA vs. HBMA performance comparison

Both algorithms were tested for 30 runs, with results presented in the Table 1. It could be
summarized that HBMA outperforms GA in terms of the completeness of the solution. In
terms of speed of the convergence, one should bear in mind that HBMA has inner loop with
different heuristics. In each generation, there are number of iterations, defined by the depth
of stochastic search, taking place.
Parameters of the GA are: crossover probability: 0.7, mutation probability: 0.01, population
size: 30, survival selection: generational, initialization: random, termination condition:
solution found or no fitness improvement over the last 50 generations.
Parameters of the HBMA are: sphermatheca size: M=12, stochastic search depth: 100,
number of broods: 30, queens energy E and speed S randomly initialized on range  0.5,1 ,

energy reduction step
 0.5 E t

M



 , heuristics included: random walk and two point

crossover. Termination conditions are: solution found or no queens fitness improvement
over last 50 generations.

6. Path Planning Results

HBMA algorithm is implemented to solve the problem of navigation of the mobile robot
through the space containing arbitrarily distributed obstacles. The environment presentation
is based on occupancy grid representation. Occupancy grids represent the world as a two-
dimensional array, with each cell having particular value of 1 (if occupied) or 0 (free cell). In
our study, obstacles are presented with pairs of nodes connected by mathematically defined
lines. This is a more compact way of presenting obstacles which will be shown as very
useful for determining collisions with the KBA. It is possible to create different obstacles as
lines, or polygons, both convex or concave easily using this compact representation. To be
able to treat the mobile robot a point in the environment, a minimum safety distance is
added on the nodes producing a safety shadow around the actual obstacles.

Comparison of Swarm Optimization and Genetic Algorithm for Mobile Robot Navigation 53

The fitness function equals the value defined with eq. (6) and is normalized to the range
 0,1 . In other words, pairs of numbers which yield lower values of fitness function have
higher chances of survival, ideally approaching zero value for solution and termination
criteria satisfaction.

Fig. 3. Fitness value for the HBMA for Diophantine equation

Fig. 4. Fitness value for the GA for Diophantine equation

It is important to notice that performance of the HBMA depend on the depth of stochastic
search. In this example, only two workers i.e. different heuristics were included; namely,
random walk (RW) and two point crossover (2PCO). That means that in each generation of
the main loop, a number of local iterations (heuristics) take place for improvement of the
brood. In our examples, depth of the local searches is set to 100 iterations.

HBMA has implicitly included elitist function, because the queen is always represented by
the best chromosome found so far over all previous generations.
For the GA, 10% elitism is included, meaning that 10% of best chromosomes are directly
copied to the new generation, resulting with keeping of best genetic material through the
whole evolutionary search. Results and behavior of HBMA and GA are presented with
Fig.3. and Fig.4. Fitness values are normalized, and it is possible to directly compare fitness
values. In the case of HBMA, the search starts from initial value 0.45, what is likely to be the
consequence of the first worker applied to initial queen’s chromosome.

 No. of runs No. of solutions
found

Average No
of generations G

GA 30 28 340 44.6
HBMA 30 30 22.9 4.6

Table 1. GA vs. HBMA performance comparison

Both algorithms were tested for 30 runs, with results presented in the Table 1. It could be
summarized that HBMA outperforms GA in terms of the completeness of the solution. In
terms of speed of the convergence, one should bear in mind that HBMA has inner loop with
different heuristics. In each generation, there are number of iterations, defined by the depth
of stochastic search, taking place.
Parameters of the GA are: crossover probability: 0.7, mutation probability: 0.01, population
size: 30, survival selection: generational, initialization: random, termination condition:
solution found or no fitness improvement over the last 50 generations.
Parameters of the HBMA are: sphermatheca size: M=12, stochastic search depth: 100,
number of broods: 30, queens energy E and speed S randomly initialized on range  0.5,1 ,

energy reduction step
 0.5 E t

M



 , heuristics included: random walk and two point

crossover. Termination conditions are: solution found or no queens fitness improvement
over last 50 generations.

6. Path Planning Results

HBMA algorithm is implemented to solve the problem of navigation of the mobile robot
through the space containing arbitrarily distributed obstacles. The environment presentation
is based on occupancy grid representation. Occupancy grids represent the world as a two-
dimensional array, with each cell having particular value of 1 (if occupied) or 0 (free cell). In
our study, obstacles are presented with pairs of nodes connected by mathematically defined
lines. This is a more compact way of presenting obstacles which will be shown as very
useful for determining collisions with the KBA. It is possible to create different obstacles as
lines, or polygons, both convex or concave easily using this compact representation. To be
able to treat the mobile robot a point in the environment, a minimum safety distance is
added on the nodes producing a safety shadow around the actual obstacles.

Swarm Robotics, From Biology to Robotics54

Y

X
0 21 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

21 22 23 24 25 26 27 28 2920

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

Start

Goal

Fig. 5. Environment presented in form of occupancy grid. Numbers denote different nodes.
Bold lines: obstacles; solid lines: feasible path; dashed line: unfeasible path.

One possible mobile robot environment is presented in Fig. 2. Obstacles are defined as lines
connecting corresponding nodes e.g. nodes 21 and 23 are occupied and connected with the
first line, making the intermediate node 22 also occupied. Nodes 55 and 47 are connected
with the second line etc. Lines can create different shapes, making nodes falling into the
polygons, “unavailable” for the robot. In case of vertical lines, which cannot be defined as
mathematical functions since mapping x→y is not uniform, a threshold value is defined
such that threshold → 0 and added on the x value of second boundary node of the line. In
such manner, line is slightly rotated around the first node, without real impact on the
obstacle position and mathematical consistence is preserved.

6.1 Objective Function
Impact of the objective or fitness function has a crucial role on the overall performance of the
evolutionary-based algorithms. The main concept in evolutionary robotics has so far been
the definition of an effective fitness function (Mermigikis & Petrou, 2006). The authors
propose some kind of methodology and state that in order to achieve evolution of useful
behaviours, the corresponding fitness function must have the simplest possible form
(implicit), it must be possible to be calculated by means of the robot itself (intrinsic) and
includes elements of the behaviour itself rather than functional details of how this can be
achieved. Proper form and tuning of the parameters can significantly increase speed of the
convergence and reduce the possibility of trapping in local optima. In evolutionary-based
algorithms, objective function has the role of selection of individuals competing to be
selected for the breeding pool and to transfer their genetic material to the new population
through the offspring. In the problem being in focus here, the objective function has to
reward those individuals (paths) that result in minimal number of collisions with obstacles
and travel minimal distance from the start to goal position at the same time. Fitness function
is presented by eq. 7:

 1 2

1 1

_
k n

i j
i j

w w
Fitness value

A a d
 

 

 

(7)

Where w1 and w2 are weight constants, 1 2 0w w  , ia is number of collisions of current
trajectory with obstacles; jd is total Euclidean distance travelled from origin to
destination point for current trajectory composed of n components; A is a constant and

0A  .
Fitness function penalizes trajectories resulting with more collisions and larger total distance
travelled. To check collisions of the trajectory i and obstacle k, two cases can occur. Case 1: a
going-through node falls onto the obstacle. This situation is easy to detect and to handle.
Case 2: a part of the trajectory between two consecutive going-through nodes intersects
obstacle. This case is handled by solving linear systems of equations for each line segment of
the trajectory and for each obstacle as a result of following system of presented with Eq. 8.

 1 X A B (8)
Matrices A and B contain coefficients derived from lines that describe obstacles and line
segments of current path. Matrix X contains solution of linear system and contains point of
intersection of obstacle and linear segment of the trajectory. If intersection point of any line
segment S and any obstacle O lies on that particular line segment, then trajectory τ intersects
obstacle O. Otherwise obstacle O doesn’t intersect trajectory τ.
Formally:

   

 

    

 

 

1

1

1

1

: , ; -

: , ;0 1

:

,

, 0

n
i

i

i

i
i

i i

i i

k
j

j

n
i

i
k

i j i
j

j i ji ji

i i

ji ji i j
j i

O

y yp x y |x y y x x
x x

y y
y

y y

O x y |x y

S

O

O S O

S p x y

Intersection of segment S and obstacle O :

x y for y
S O







 







 
 

 



 







 

 
    

 





   



 












 

 









  1i

 otherwise

 



(9)

Values of weight factors are environment dependent and determined experimentally in this
study, although parameterization of environment with regards on number and distribution
of the obstacles is considered for future work. This parameterization will include number of
obstacles, distribution (spread or clustered) and position of obstacles in environment (along

Comparison of Swarm Optimization and Genetic Algorithm for Mobile Robot Navigation 55

Y

X
0 21 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

21 22 23 24 25 26 27 28 2920

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

Start

Goal

Fig. 5. Environment presented in form of occupancy grid. Numbers denote different nodes.
Bold lines: obstacles; solid lines: feasible path; dashed line: unfeasible path.

One possible mobile robot environment is presented in Fig. 2. Obstacles are defined as lines
connecting corresponding nodes e.g. nodes 21 and 23 are occupied and connected with the
first line, making the intermediate node 22 also occupied. Nodes 55 and 47 are connected
with the second line etc. Lines can create different shapes, making nodes falling into the
polygons, “unavailable” for the robot. In case of vertical lines, which cannot be defined as
mathematical functions since mapping x→y is not uniform, a threshold value is defined
such that threshold → 0 and added on the x value of second boundary node of the line. In
such manner, line is slightly rotated around the first node, without real impact on the
obstacle position and mathematical consistence is preserved.

6.1 Objective Function
Impact of the objective or fitness function has a crucial role on the overall performance of the
evolutionary-based algorithms. The main concept in evolutionary robotics has so far been
the definition of an effective fitness function (Mermigikis & Petrou, 2006). The authors
propose some kind of methodology and state that in order to achieve evolution of useful
behaviours, the corresponding fitness function must have the simplest possible form
(implicit), it must be possible to be calculated by means of the robot itself (intrinsic) and
includes elements of the behaviour itself rather than functional details of how this can be
achieved. Proper form and tuning of the parameters can significantly increase speed of the
convergence and reduce the possibility of trapping in local optima. In evolutionary-based
algorithms, objective function has the role of selection of individuals competing to be
selected for the breeding pool and to transfer their genetic material to the new population
through the offspring. In the problem being in focus here, the objective function has to
reward those individuals (paths) that result in minimal number of collisions with obstacles
and travel minimal distance from the start to goal position at the same time. Fitness function
is presented by eq. 7:

 1 2

1 1

_
k n

i j
i j

w w
Fitness value

A a d
 

 

 

(7)

Where w1 and w2 are weight constants, 1 2 0w w  , ia is number of collisions of current
trajectory with obstacles; jd is total Euclidean distance travelled from origin to
destination point for current trajectory composed of n components; A is a constant and

0A  .
Fitness function penalizes trajectories resulting with more collisions and larger total distance
travelled. To check collisions of the trajectory i and obstacle k, two cases can occur. Case 1: a
going-through node falls onto the obstacle. This situation is easy to detect and to handle.
Case 2: a part of the trajectory between two consecutive going-through nodes intersects
obstacle. This case is handled by solving linear systems of equations for each line segment of
the trajectory and for each obstacle as a result of following system of presented with Eq. 8.

 1 X A B (8)
Matrices A and B contain coefficients derived from lines that describe obstacles and line
segments of current path. Matrix X contains solution of linear system and contains point of
intersection of obstacle and linear segment of the trajectory. If intersection point of any line
segment S and any obstacle O lies on that particular line segment, then trajectory τ intersects
obstacle O. Otherwise obstacle O doesn’t intersect trajectory τ.
Formally:

   

 

    

 

 

1

1

1

1

: , ; -

: , ;0 1

:

,

, 0

n
i

i

i

i
i

i i

i i

k
j

j

n
i

i
k

i j i
j

j i ji ji

i i

ji ji i j
j i

O

y yp x y |x y y x x
x x

y y
y

y y

O x y |x y

S

O

O S O

S p x y

Intersection of segment S and obstacle O :

x y for y
S O







 







 
 

 



 







 

 
    

 





   



 












 

 









  1i

 otherwise

 



(9)

Values of weight factors are environment dependent and determined experimentally in this
study, although parameterization of environment with regards on number and distribution
of the obstacles is considered for future work. This parameterization will include number of
obstacles, distribution (spread or clustered) and position of obstacles in environment (along

Swarm Robotics, From Biology to Robotics56

the path connecting initial and goal position, or in corner away of main pathways). Through
parameterization, correlation of form of objective function, neural architecture and
presented environment could be revealed and thus efficiency of the algorithm further
increased.

6.1 Simulation Results
Different environmental setups were used for the experiments. Performance of both
algorithms significantly depends on the distribution of the obstacles, namely, whether
obstacles are cluttered, concentrated, in the vicinity of the goal position etc. The most
difficult environmental setup is when obstacles are cluttered around the proximity of the
goal position.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
Environment

X distance

Y
 d

is
ta

nc
e

Accepted solution after
n= 320 generations

Best individual in
initial population

Initial position

Target position

Fig. 6. Environment with obstacles, dashed, unfeasible path, red and feasible path in green
colour

One possible environment setup is presented with Fig. 6. Four obstacles are present in the
environment with given initial and destination position. For the environment presented
with Fig.6., comparison of HBMA and GA is conducted. Results are presented in the Table 2.

 No. of runs No. of solutions
found

Average No
of generations G

GA 500 478 3120 430
HBMA 500 493 430 58

Table 2. GA vs. HBMA performance comparison for path planning problem.

For simplicity, 10 x 10 grid is applied to the environments. Parameters of the GA are:
Population size = 50, crossover probability: 0.8, adaptive mutation rate: start with 0.1,

increment 0.1 if no fitness improvement over 50 consecutive steps. Selection is roulette-
wheel generational, with the best member of previous generation replacing the worst
member of current population. Maximum length of chromosomes (degrees of freedom of
trajectory) =15.
Both algorithms are able to find solutions for the presented environment with relatively
high confidence. Again is the completeness (total number of the solutions found by the
algorithm) slightly on the side of the HBMA. At the same time, number of iterations
required is lesser for the HBMA, but CPU time is larger, because of the presence of the
internal loop for the brood improvement.
Parameters of the HBMA were the same as in the Diophantine equation example. Regarding
the problem of appropriate parameter selection, it is known to be difficult to tune
parameters for optimal algorithm behavior, for both algorithms. Parameters were
experimentally chosen..

7. Conclusions

HBMA algorithm was developed and compared with performance of the GA algorithm for
two test cases. The firs test case was a benchmark Diophantine equation problem. It is
shown that HBMA is comparable to the performance of well known GA in terms of CPU
time, with the time slightly on the side of the GA. In terms of completeness of the solution,
HBMA was able to find all solutions for the given problem, whereas GA twice did not find
the solution for given termination criteria.
Similar behavior was observed for the second test case, namely collision free path planning
for the mobile robot. However, it is not easy to conclude that HBMA outperforms GA in any
way, since both algorithms are stochastic and dependant on the proper selection of
parameters. Although both algorithms and objective were designed to be as simple as
possible, to enable fair comparison, additional experiments should be performed to achieve
more reliable behavior and merits for the algorithms.
HBMA could be further improved by adding additional workers (heuristics) and by
monitoring success of different heuristics on different problems. GA could be improved by
tailoring specific evolutionary operators for given problems.

8. References

Abass, H.A. (2001). A single queen single worker honey bees approach to 3-SAT, Proceedings
of the Genetic and Evolutionary Computation Conference, San Francisco, 2001.

Abass, H.A. (2002). Marriage in honey bees’ optimization: A haplometrics polygonus
swarming approach, Proceedings of the Congress on Evolutionary Computation, Seoul,
2001.

Alexopulous, C.; Griffin, P.M. (1992). Path planning for a mobile robot. IEEE Transactions on
Systems, Man and Cybernetics, Vol.22, No.2, page numbers 318-322.

Beni, G. (2004). From Swarm Intelligence to Swarm Robotics, In: Swarm Robotics, Erol Sahin
(Ed.), 1-10, Springer LNCS, 3-540-24296-1, Berlin

Bull, P.; Knowles, A.; Tedesco, G. (2006). Diophantine benchmarks for the b-cell algorithm.
In proceedings of International Conference on Artificial Immune Systems Canterbury,
Great Britain

Comparison of Swarm Optimization and Genetic Algorithm for Mobile Robot Navigation 57

the path connecting initial and goal position, or in corner away of main pathways). Through
parameterization, correlation of form of objective function, neural architecture and
presented environment could be revealed and thus efficiency of the algorithm further
increased.

6.1 Simulation Results
Different environmental setups were used for the experiments. Performance of both
algorithms significantly depends on the distribution of the obstacles, namely, whether
obstacles are cluttered, concentrated, in the vicinity of the goal position etc. The most
difficult environmental setup is when obstacles are cluttered around the proximity of the
goal position.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
Environment

X distance

Y
 d

is
ta

nc
e

Accepted solution after
n= 320 generations

Best individual in
initial population

Initial position

Target position

Fig. 6. Environment with obstacles, dashed, unfeasible path, red and feasible path in green
colour

One possible environment setup is presented with Fig. 6. Four obstacles are present in the
environment with given initial and destination position. For the environment presented
with Fig.6., comparison of HBMA and GA is conducted. Results are presented in the Table 2.

 No. of runs No. of solutions
found

Average No
of generations G

GA 500 478 3120 430
HBMA 500 493 430 58

Table 2. GA vs. HBMA performance comparison for path planning problem.

For simplicity, 10 x 10 grid is applied to the environments. Parameters of the GA are:
Population size = 50, crossover probability: 0.8, adaptive mutation rate: start with 0.1,

increment 0.1 if no fitness improvement over 50 consecutive steps. Selection is roulette-
wheel generational, with the best member of previous generation replacing the worst
member of current population. Maximum length of chromosomes (degrees of freedom of
trajectory) =15.
Both algorithms are able to find solutions for the presented environment with relatively
high confidence. Again is the completeness (total number of the solutions found by the
algorithm) slightly on the side of the HBMA. At the same time, number of iterations
required is lesser for the HBMA, but CPU time is larger, because of the presence of the
internal loop for the brood improvement.
Parameters of the HBMA were the same as in the Diophantine equation example. Regarding
the problem of appropriate parameter selection, it is known to be difficult to tune
parameters for optimal algorithm behavior, for both algorithms. Parameters were
experimentally chosen..

7. Conclusions

HBMA algorithm was developed and compared with performance of the GA algorithm for
two test cases. The firs test case was a benchmark Diophantine equation problem. It is
shown that HBMA is comparable to the performance of well known GA in terms of CPU
time, with the time slightly on the side of the GA. In terms of completeness of the solution,
HBMA was able to find all solutions for the given problem, whereas GA twice did not find
the solution for given termination criteria.
Similar behavior was observed for the second test case, namely collision free path planning
for the mobile robot. However, it is not easy to conclude that HBMA outperforms GA in any
way, since both algorithms are stochastic and dependant on the proper selection of
parameters. Although both algorithms and objective were designed to be as simple as
possible, to enable fair comparison, additional experiments should be performed to achieve
more reliable behavior and merits for the algorithms.
HBMA could be further improved by adding additional workers (heuristics) and by
monitoring success of different heuristics on different problems. GA could be improved by
tailoring specific evolutionary operators for given problems.

8. References

Abass, H.A. (2001). A single queen single worker honey bees approach to 3-SAT, Proceedings
of the Genetic and Evolutionary Computation Conference, San Francisco, 2001.

Abass, H.A. (2002). Marriage in honey bees’ optimization: A haplometrics polygonus
swarming approach, Proceedings of the Congress on Evolutionary Computation, Seoul,
2001.

Alexopulous, C.; Griffin, P.M. (1992). Path planning for a mobile robot. IEEE Transactions on
Systems, Man and Cybernetics, Vol.22, No.2, page numbers 318-322.

Beni, G. (2004). From Swarm Intelligence to Swarm Robotics, In: Swarm Robotics, Erol Sahin
(Ed.), 1-10, Springer LNCS, 3-540-24296-1, Berlin

Bull, P.; Knowles, A.; Tedesco, G. (2006). Diophantine benchmarks for the b-cell algorithm.
In proceedings of International Conference on Artificial Immune Systems Canterbury,
Great Britain

Swarm Robotics, From Biology to Robotics58

Chen, L.; Liu, D.Y. (1997). An efficient algorithm for finding a collision-free path among poly
obstacles. Journal of Robotics Systems, Vol.7, No.1, page numbers 129-137.

Du, X.; Chen, H.H.; Gu, W. (2005). Neural network and genetic algorithm based global path
planning in a static environment. Journal of Zheijang University SCIENCE, Vol.6,
No.6, 2005, page numbers 549-554, ISSN 1009-3095

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Weseley, ISBN 02011575675, USA

Khoogar, A.R.; Parker, J.K. (1991). Obstacle Avoidance of Redundant Manipulators Using
Genetic Algorithms. Proceedings of IEEE International Conference on Robotics and
Automation, pp.317-320, Sacramento 1991

Latombe, J.C. (1991). Robot Motion Planning, Kluwer Academic Publishers, ISBN 0-7923-9129-
2, Boston

Mermigkis, I.; Petrou, L. (2006). Exploring coevolutionary relations by alterations in fitness
function: Experiments with simulated robots (2006) Journal of Intelligent and Robotic
Systems: Theory and Applications, vol.3 No.47 , pp. 257-284.

Ram, A.; Arkin, R.; Boone, G., (1994). Using genetic algorithms to learn reactive control
parameters for autonomous robotic navigation. Adaptive Behavior, Vol.2., No.2,
1994, page numbers 100-107.

Ramakrishnan, R.; Zein-Sabatto, S. (2002). Multiple Path planning for a Group of Mobile
Robots in a 3D Environment Using Genetic Algorithms. Proceedings of IEEE
Southeast Con,pp.359-363, South Carolina 2002

Sadati, N., Taheri, J. (2002). Genetic Algorithm in Robot Path Planning Problem in Crisp and
Fuzzyfied Environments. Proceedings of IEEE International Conference on Industrial
Technology, pp.175-180, Bangkok 2002

Zarate, L.E.; Becker, M.; Garrido, B.D.M.; Rocha, H.S.C. (2002). An Artificial Neural Network
Structure Able toObstacle Avoidance Behavior Used in Mobile Robots. Proceedings
of IEEE 28th Annual Conference of the Industrial Electronics Society, pp.2457-2461.
Spain

Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion and Path Planning 59

Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion and
Path Planning

Songdong Xue, Jianchao Zeng and Jinwei Guo

0

Key Aspects of PSO-Type Swarm Robotic Search:
Signals Fusion and Path Planning

Songdong Xue1,2, Jianchao Zeng1 and Jinwei Guo1

1 Taiyuan University of Science and Technology, 2 Lanzhou University of Technology
China

1. Introduction

Extending the particle swarm optimization (PSO) algorithm to be one of systemic modeling
and controlling tools, several research groups investigate target search with swarm robots
(simulated or physical) respectively (Doctor et al., 2004; Hereford & Siebold, 2008; Jatmiko
et al., 2007; Marques et al., 2006; Pugh & Martinoli, 2007; Xue & Zeng, 2008). The common
idea they hold is to map such swarm robotic search to PSO and deal it with by employing
the existing bio-inspired approaches to the latter case in a similar way (Xue et al., 2009). Of
the mapping relations, some aspects including fitness evaluate and path planning have to
be especially considered because PSO-type algorithm working depends heavily upon them.
Unlike regarding these respects in PSO, however, the actual characteristics of robot and com-
plexity of sensing to environment make it impossible to be simplified even ignored. Bear that
in mind, we might as well explore some representative research work. Pugh et al. compare
the similarities and differences in properties between real robot and ideal particle, then extend
PSO directly to model multiple robots for studying at an abstract level the effects of changing
parameters of the swarm system (Pugh & Martinoli, 2007). Xue et al. simplify characteristics
of robot by treating each physical robot as a first order inertial element to study mechanism
of limited sensing and local interactions in swarm robotic search (Xue & Zeng, 2008). Doc-
tor et al. discuss applying PSO for multiple robot searches, whose focus is on optimizing
the parameters of their algorithm (Doctor et al., 2004). Jatmiko et al. exert mobile robots for
plume detection and traversal, with utilizing a modified form of PSO to control the robots
and consider how the robots respond to search space changes such as turbulence and wind
changes (Jatmiko et al., 2007). Hereford et al. consider how well the PSO-based robot search
will scale to large numbers of robots by designing specific communication strategies. Based
upon this, they have published results of implementing their PSO variants in actual hardware
robot swarms (Hereford & Siebold, 2008). Marques et al. analytically compare PSO-based
cooperative search and gradient search as well as biased-random walk search to try to find
out which performing well in search efficiency. Due to the exchange of information between
neighbors in the first search mode, PSO-type olfactory guided search possesses merit in search
properties over its two competitors (Marques et al., 2006).
It is clear that all of works mentioned above neither involve target search with PSO-type con-
trol algorithm under conditions of realistic sensing to environment, nor handle the problem
of obstacle avoidance in the process of target search. On the contrary, each of them assumes
a potential target in search space to give off a diffuse residue that can be detected by a single

4

Swarm Robotics, From Biology to Robotics60

sensor, which not corresponding with the actual needs and only having theoretical signifi-
cance (Hereford & Siebold, 2008). In fact, target signals in the real world can not simply be
attributed to only one type. Thus, it is need to treat real-time heterogeneous signals fusion
rather than measure unisource signals as fitness evaluate. Just take search and rescue in disas-
ters for example. When working miners are confronted with gas outburst accidents in closed
roadways, they would be likely to lose touch with outside. Unfortunately, search operations
here tend to be difficult because of the extreme risk. Swarm robots may therefore be pitched
into carrying out such missions taking the place of human beings. There are multiple kinds
of heterogeneous signals, including intermittent sound of call for help and periodic radio fre-
quency (RF) waves as well as continuous gas on disaster spot. We thereupon conduct a case
study of target search for propose of PSO-type control. Thus, the rest of this paper proceeds as
follows: In Section 2 the system modeling at individual and swarm levels is done to introduce
the topics. In Section 3, the properties of target signals are introduced, then a fusion frame-
work is presented. Then, real time path planning strategy for a typical swarm of wheeled
mobile robots (WMR) with kinematic constraints in unstructured environment is described
in Section 4. To examine the validity of fusion approach and path planning, simulations are
conducted in Section 5. Finally, we conclude in Section 6.

2. System Modeling

Consider a swarm of N differentially steered WMRs. The reactive control structure of robot
used here makes environment sensing linked with actions directly, without requirement for
explicit expression about search space. Meanwhile, the model of our swarm robotic system
can be given after mapping PSO to swarm robotic search (Xue & Zeng, 2008). Obviously, the
modeling to the system consists of two levels according to abstract degrees, i.e., the micro-
scopic (individual) and the macroscopic (swarm) (Lerman et al., 2005; Martinoli & Easton,
2002; Martinoli et al., 2004).







Fig. 1. Control Hiberarchy of Individual Robot

2.1 Modeling for Individual Robot
As the reactive architecture with three functional modules including environment sensing,
behavior planning and actuator driven is chosen (Murphy, 2000), see Fig. 1, both proximity

sensor system modeling and kinematic modeling should be considered, while the modeling
for target signals detection system is dismissed. The reason is that the two former parts are
related to path planning and the latter configuration depends on the specific types of target
signals rather than physical size of robot and its kinematics.

2.1.1 Proximity Sensor Systemic Model
To integrate collision avoidance mechanism, we assume that proximity sensors (infrared or
laser) are equipped on each robot (Jatmiko et al., 2007). Without taking the types and proper-
ties of proximity sensors into account, we can only extract the commonness according to the
principle of range measurement for modeling. As for the specific configuration of proximity
sensors in this work, sixteen proximity sensors are assumed to be equipped on each individual
robot, surrounding their body in a discrete circular uniform distributional fashion, see Fig. 2
and Tab. 1 for details, where the black ovals stand for proximity sensors and the arrow points
the heading.






















 

Fig. 2. Proximity Sensor System of Individual Robot

2.1.2 Kinematic Model
The modeling of the kinematics of robots in a two-dimensional plane can be done using either
cartesian or polar coordinates. The model in cartesian coordinates is the most widely used
and discussion here will be limited to modeling in cartesian coordinates (Maalouf et al., 2006).
Typically, the posture of robot at any instant is defined by the position and heading relative to
the global frame. The kinematic model is given as follows (Campion et al., 1996):




ẋi = vi cos θi
ẏi = vi sin θi
θ̇i = ωi

(1)

where pi = (xi, yi)T be position vector or cartesian coordinates of robot Ri under global frame,
θi its orientation or steering angle, vi translational or driving or linear velocity and ωi angular

Sensor Nos. Degree Degree Degree Degree Degree Degree Degree Degree

1–8 − 7
8 π − 3

4 π − 5
8 π − 1

2 π − 3
8 π − 1

4 π − 1
8 π 0

9–16 1
8 π 1

4 π 3
8 π 1

2 π 5
8 π 3

4 π 7
8 π π

Table 1. Distribution Degrees of Proximity Sensors

Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion and Path Planning 61

sensor, which not corresponding with the actual needs and only having theoretical signifi-
cance (Hereford & Siebold, 2008). In fact, target signals in the real world can not simply be
attributed to only one type. Thus, it is need to treat real-time heterogeneous signals fusion
rather than measure unisource signals as fitness evaluate. Just take search and rescue in disas-
ters for example. When working miners are confronted with gas outburst accidents in closed
roadways, they would be likely to lose touch with outside. Unfortunately, search operations
here tend to be difficult because of the extreme risk. Swarm robots may therefore be pitched
into carrying out such missions taking the place of human beings. There are multiple kinds
of heterogeneous signals, including intermittent sound of call for help and periodic radio fre-
quency (RF) waves as well as continuous gas on disaster spot. We thereupon conduct a case
study of target search for propose of PSO-type control. Thus, the rest of this paper proceeds as
follows: In Section 2 the system modeling at individual and swarm levels is done to introduce
the topics. In Section 3, the properties of target signals are introduced, then a fusion frame-
work is presented. Then, real time path planning strategy for a typical swarm of wheeled
mobile robots (WMR) with kinematic constraints in unstructured environment is described
in Section 4. To examine the validity of fusion approach and path planning, simulations are
conducted in Section 5. Finally, we conclude in Section 6.

2. System Modeling

Consider a swarm of N differentially steered WMRs. The reactive control structure of robot
used here makes environment sensing linked with actions directly, without requirement for
explicit expression about search space. Meanwhile, the model of our swarm robotic system
can be given after mapping PSO to swarm robotic search (Xue & Zeng, 2008). Obviously, the
modeling to the system consists of two levels according to abstract degrees, i.e., the micro-
scopic (individual) and the macroscopic (swarm) (Lerman et al., 2005; Martinoli & Easton,
2002; Martinoli et al., 2004).







Fig. 1. Control Hiberarchy of Individual Robot

2.1 Modeling for Individual Robot
As the reactive architecture with three functional modules including environment sensing,
behavior planning and actuator driven is chosen (Murphy, 2000), see Fig. 1, both proximity

sensor system modeling and kinematic modeling should be considered, while the modeling
for target signals detection system is dismissed. The reason is that the two former parts are
related to path planning and the latter configuration depends on the specific types of target
signals rather than physical size of robot and its kinematics.

2.1.1 Proximity Sensor Systemic Model
To integrate collision avoidance mechanism, we assume that proximity sensors (infrared or
laser) are equipped on each robot (Jatmiko et al., 2007). Without taking the types and proper-
ties of proximity sensors into account, we can only extract the commonness according to the
principle of range measurement for modeling. As for the specific configuration of proximity
sensors in this work, sixteen proximity sensors are assumed to be equipped on each individual
robot, surrounding their body in a discrete circular uniform distributional fashion, see Fig. 2
and Tab. 1 for details, where the black ovals stand for proximity sensors and the arrow points
the heading.






















 

Fig. 2. Proximity Sensor System of Individual Robot

2.1.2 Kinematic Model
The modeling of the kinematics of robots in a two-dimensional plane can be done using either
cartesian or polar coordinates. The model in cartesian coordinates is the most widely used
and discussion here will be limited to modeling in cartesian coordinates (Maalouf et al., 2006).
Typically, the posture of robot at any instant is defined by the position and heading relative to
the global frame. The kinematic model is given as follows (Campion et al., 1996):




ẋi = vi cos θi
ẏi = vi sin θi
θ̇i = ωi

(1)

where pi = (xi, yi)T be position vector or cartesian coordinates of robot Ri under global frame,
θi its orientation or steering angle, vi translational or driving or linear velocity and ωi angular

Sensor Nos. Degree Degree Degree Degree Degree Degree Degree Degree

1–8 − 7
8 π − 3

4 π − 5
8 π − 1

2 π − 3
8 π − 1

4 π − 1
8 π 0

9–16 1
8 π 1

4 π 3
8 π 1

2 π 5
8 π 3

4 π 7
8 π π

Table 1. Distribution Degrees of Proximity Sensors

Swarm Robotics, From Biology to Robotics62

or steering velocity, as is shown in Fig. 3. In the absence of obstacles, the basic motion tasks
assigned to a WMR may be reduced to moving between two robot postures and following a
given trajectory (Oriolo et al., 2002). Whichever can finally be attributed to the design of con-
trol laws, i.e., control command series of inputs (v, ω)T . Although the actual commands may
come in another forms, e.g., the angular velocities ωR and ωL of the right and left wheels,
respectively, rather than v and ω, we can still make use of analytical module built in robot
controller to get the required commands by a one-to-one mapping between these velocities
(Oriolo et al., 2002; Siegwart & Nourbakhsh, 2004). For all control schemes, in fact, an addi-
tional filtering of original velocity commands is included to account for robot and actuator
dynamics.

Y

X

�(t)

(x(t),y(t))

�(t)

v(t)

Fig. 3. Kinematic Model of Individual Robot

Due to the abilities of motion mechanism and actuators, there exist limitations on real veloci-
ties. Consequently, the actual input commands can be obtained with the following rules:

vi =




vmax, if vi(t) > vmax
0, if vi(t) < 0
vi(t), otherwise

ωi =




ωmax, if ωi(t) > ωmax
−ωmax, if ωi(t) < −ωmax
ωi(t), otherwise

(2)

Note that above rules come from non-holonomic constraints because robot can move along its
bearing only, that is, the direction of vi is always in accordance with the heading of robot, see
Fig. 3 and Fig. 4. Then, vi can be used to decide the orientation of robot Ri. As for the robot at
position p1 with vi(t) = (vi1, vi2)t, we can calculate the orientation:

θi(t) = arctan
vi2(t)
vi1(t)

(3)

Y

X

��

�

�

�

p1(x1,y1)

p2(x2,y2)

Fig. 4. Motion Control of A WMR

Similarly, the orientation θi(t + ∆t) def= α at position p2 with vi(t + ∆t) = (vi1, vi2)t+∆t can be
decided too. Therefore, the required expected turning angle βi from p1 to p2 can be computed
and used to further decide ωi:

∆βi = arctan
vi2(t + ∆t)
vi1(t + ∆t)

− arctan
vi2(t)
vi1(t)

(4)

The posture vectors (xi, yi, θi)T of robot Ri are required as control inputs to individual con-
troller at each time step, depending on the posture estimate with incremental encoder data
(odometry). Assume the angular wheel displacements having been measured during the sam-
pling time ∆t by the encoders. We can further obtain the linear and angular displacements ∆s
and ∆θ. Then, the estimate of posture at time t + ∆t can be computationally decided (Oriolo
et al., 2002; Siegwart & Nourbakhsh, 2004):




x̂
ŷ
θ̂




t+∆t

=




x̂
ŷ
θ̂




t

+




∆s cos(θ̂ + ∆θ
2)

∆s sin(θ̂ + ∆θ
2)

∆θ




t

(5)

2.2 Modeling for Swarm Robots
Our swarm robotic system is composed of the above-mentioned robots. The meanings of
used symbols are as follows: pi = (xi1, xi2) and vi = (vi1, vi2) are position and linear velocity
of robot Ri at time t respectively; p∗i = (x∗i1, x∗i2) and p∗(i) = (x∗(i)1, x∗(i)2) the best historical
positions of robot i itself and its communication-based neighborhood (Pugh et al., 2006). Based
on this, we can define the best position within its neighborhood (Xue & Zeng, 2008; Xue et al.,
2009):

p∗(i)(t) = p∗k (t), argk max{I(p∗k (t)), k ∈ Ri’s neighborhood} (6)

where I() is the fusion of measurement readings of target signals. Further, we are able to
model swarm robotic system with the extended PSO method:

Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion and Path Planning 63

or steering velocity, as is shown in Fig. 3. In the absence of obstacles, the basic motion tasks
assigned to a WMR may be reduced to moving between two robot postures and following a
given trajectory (Oriolo et al., 2002). Whichever can finally be attributed to the design of con-
trol laws, i.e., control command series of inputs (v, ω)T . Although the actual commands may
come in another forms, e.g., the angular velocities ωR and ωL of the right and left wheels,
respectively, rather than v and ω, we can still make use of analytical module built in robot
controller to get the required commands by a one-to-one mapping between these velocities
(Oriolo et al., 2002; Siegwart & Nourbakhsh, 2004). For all control schemes, in fact, an addi-
tional filtering of original velocity commands is included to account for robot and actuator
dynamics.

Y

X

�(t)

(x(t),y(t))

�(t)

v(t)

Fig. 3. Kinematic Model of Individual Robot

Due to the abilities of motion mechanism and actuators, there exist limitations on real veloci-
ties. Consequently, the actual input commands can be obtained with the following rules:

vi =




vmax, if vi(t) > vmax
0, if vi(t) < 0
vi(t), otherwise

ωi =




ωmax, if ωi(t) > ωmax
−ωmax, if ωi(t) < −ωmax
ωi(t), otherwise

(2)

Note that above rules come from non-holonomic constraints because robot can move along its
bearing only, that is, the direction of vi is always in accordance with the heading of robot, see
Fig. 3 and Fig. 4. Then, vi can be used to decide the orientation of robot Ri. As for the robot at
position p1 with vi(t) = (vi1, vi2)t, we can calculate the orientation:

θi(t) = arctan
vi2(t)
vi1(t)

(3)

Y

X

��

�

�

�

p1(x1,y1)

p2(x2,y2)

Fig. 4. Motion Control of A WMR

Similarly, the orientation θi(t + ∆t) def= α at position p2 with vi(t + ∆t) = (vi1, vi2)t+∆t can be
decided too. Therefore, the required expected turning angle βi from p1 to p2 can be computed
and used to further decide ωi:

∆βi = arctan
vi2(t + ∆t)
vi1(t + ∆t)

− arctan
vi2(t)
vi1(t)

(4)

The posture vectors (xi, yi, θi)T of robot Ri are required as control inputs to individual con-
troller at each time step, depending on the posture estimate with incremental encoder data
(odometry). Assume the angular wheel displacements having been measured during the sam-
pling time ∆t by the encoders. We can further obtain the linear and angular displacements ∆s
and ∆θ. Then, the estimate of posture at time t + ∆t can be computationally decided (Oriolo
et al., 2002; Siegwart & Nourbakhsh, 2004):




x̂
ŷ
θ̂




t+∆t

=




x̂
ŷ
θ̂




t

+




∆s cos(θ̂ + ∆θ
2)

∆s sin(θ̂ + ∆θ
2)

∆θ




t

(5)

2.2 Modeling for Swarm Robots
Our swarm robotic system is composed of the above-mentioned robots. The meanings of
used symbols are as follows: pi = (xi1, xi2) and vi = (vi1, vi2) are position and linear velocity
of robot Ri at time t respectively; p∗i = (x∗i1, x∗i2) and p∗(i) = (x∗(i)1, x∗(i)2) the best historical
positions of robot i itself and its communication-based neighborhood (Pugh et al., 2006). Based
on this, we can define the best position within its neighborhood (Xue & Zeng, 2008; Xue et al.,
2009):

p∗(i)(t) = p∗k (t), argk max{I(p∗k (t)), k ∈ Ri’s neighborhood} (6)

where I() is the fusion of measurement readings of target signals. Further, we are able to
model swarm robotic system with the extended PSO method:

Swarm Robotics, From Biology to Robotics64




vij(t + 1) = ξivij(t) + c1r1(x∗ij − xij) + c2r2(x∗(i)j − xij)
vij(t + ∆t) = vij(t) + Ki(vij(t + 1) − vij(t))
xij(t + ∆t) = xij(t) + vij(t + ∆t)∆t

(7)

where vij(t) and xij(t) are j-dimensional velocity and position of robot Ri at time t respectively,
vij(t + 1) the expected computational velocity, Ki designed parameter of local controller gain
which can be chosen by designer. As robot may have to take several time steps λ∆t, in most
cases, to reach an expected position from the consecutive previous expected one, adding this
factor to obtain a “smoother” displacement. Besides, ξi be algorithmic inertia coefficient that
can be set constantly or dynamically, c1 and c2 cognitive and social acceleration constant re-
spectively, r1 and r2 stochastic variables subject to the distribution of U(0, 1). We can calculate
the linear velocity:

vi(t + ∆t) =
√

(vi1(t + ∆t))2 + (vi2(t + ∆t))2 (8)

With kinematics model given in Eq. (1), the input of linear velocity (Peng & Akella, 2005) and
angular velocity (Siegwart & Nourbakhsh, 2004) can be decided:




vi(t + ∆t) = min(vmax, vi(t + ∆t))

ωi(t + ∆t) =

{
ωmax, if βi

∆t ≥ ωmax
βi
∆t , otherwise

(9)

where βi is the computational expected turning angle from the current position to the next
expected one, also see Fig. 4 for details.

3. Signals Fusion

The key to PSO-type search algorithm is to take detection and fusion of target signals as fitness
evaluate so as to decide the best-found position, since each individual robot is guided by
the best experience of itself own and its neighborhood. Obviously, the temporal and spatial
features of different types of signals should be explored in advance.

3.1 Signal Properties
With mathematical models of signals propagation, we can generate a set of theoretically com-
puted signal strength data akin to the empirical data set to design fusion algorithm rather than
collect the data on spot.

3.1.1 Sound
The identical model may be used for both propagation and measurement as to the same space.
Compared with the size of environment, the mouth of victim can be considered as a point
sound source. Let N robots equipped with acoustic sensors construct a mobile sensor field,
where an immovable target emits omnidirectional acoustic signals. The signal energy mea-
sured on the ith sensor over time interval t, denoted by (Li & Hu, 2003):

yi(t) = gi
s(t − ti)

|r(t − ti) − ri|α
+ εi(t) (10)

where ti is time delay for sound propagates from target to the ith robot, s(t) is a scalar denoting
energy emitted during sampling time t; r(t) coordinates of target during t; ri coordinates of
the ith stationary sensor; gi gain factor of the ith acoustic sensor; α(≈ 2) energy decay factor,
and εi(t) cumulative effects of modeling error of gi, ri, α and the additive observation noise
of yi(t), see Fig. 5.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 5. Acoustic Energy Loss Fitting

3.1.2 RF Waves
Typically, underground mine personnel tracking systems rely more and more upon radio fre-
quency identification (RFID) technologies today. Such a system has basic components includ-
ing readers and tags. The latter is categorized as either passive or active (Ni et al., 2004). As
for coal mine application, a tag is often mounted on a miner’s helmet with his lamp. For a ra-
dio channel, the transmitted signal reaches receiver via multiple paths (Bahl & Padmanabhan,
2000):

P(d) = P(d0) − 10α lg
d
d0

− η (11)

where α indicates loss rate, P(d0) is signal power at reference distance d0 and d transmitter-
receiver distance. The value of P(d0) can be derived empirically or obtained from the wireless
network hardware specifications. In general, η value is derived empirically, see Fig. 6.

3.1.3 Gas
The gas in coal mines will diffuse quickly in closed roadways after gas outburst. The pervasion
process can be described as affecting by some odor point sources. For convenience, they can
be viewed as only one by linear combination. Let the projection of leak point on the ground
be origin, average direction of downwind x-axis, a right hand three-dimensional coordinate
system can be set. Then, we can calculate gas concentration in any point on the ground (z = 0)
following the law (Marques et al., 2006):

C(x, y, t) =
Q

2πσy(x, t)σz(x)
exp{ (y(t) − y0(x, t))2

−2σ2
y (x, t)

} (12)

Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion and Path Planning 65




vij(t + 1) = ξivij(t) + c1r1(x∗ij − xij) + c2r2(x∗(i)j − xij)
vij(t + ∆t) = vij(t) + Ki(vij(t + 1) − vij(t))
xij(t + ∆t) = xij(t) + vij(t + ∆t)∆t

(7)

where vij(t) and xij(t) are j-dimensional velocity and position of robot Ri at time t respectively,
vij(t + 1) the expected computational velocity, Ki designed parameter of local controller gain
which can be chosen by designer. As robot may have to take several time steps λ∆t, in most
cases, to reach an expected position from the consecutive previous expected one, adding this
factor to obtain a “smoother” displacement. Besides, ξi be algorithmic inertia coefficient that
can be set constantly or dynamically, c1 and c2 cognitive and social acceleration constant re-
spectively, r1 and r2 stochastic variables subject to the distribution of U(0, 1). We can calculate
the linear velocity:

vi(t + ∆t) =
√

(vi1(t + ∆t))2 + (vi2(t + ∆t))2 (8)

With kinematics model given in Eq. (1), the input of linear velocity (Peng & Akella, 2005) and
angular velocity (Siegwart & Nourbakhsh, 2004) can be decided:




vi(t + ∆t) = min(vmax, vi(t + ∆t))

ωi(t + ∆t) =

{
ωmax, if βi

∆t ≥ ωmax
βi
∆t , otherwise

(9)

where βi is the computational expected turning angle from the current position to the next
expected one, also see Fig. 4 for details.

3. Signals Fusion

The key to PSO-type search algorithm is to take detection and fusion of target signals as fitness
evaluate so as to decide the best-found position, since each individual robot is guided by
the best experience of itself own and its neighborhood. Obviously, the temporal and spatial
features of different types of signals should be explored in advance.

3.1 Signal Properties
With mathematical models of signals propagation, we can generate a set of theoretically com-
puted signal strength data akin to the empirical data set to design fusion algorithm rather than
collect the data on spot.

3.1.1 Sound
The identical model may be used for both propagation and measurement as to the same space.
Compared with the size of environment, the mouth of victim can be considered as a point
sound source. Let N robots equipped with acoustic sensors construct a mobile sensor field,
where an immovable target emits omnidirectional acoustic signals. The signal energy mea-
sured on the ith sensor over time interval t, denoted by (Li & Hu, 2003):

yi(t) = gi
s(t − ti)

|r(t − ti) − ri|α
+ εi(t) (10)

where ti is time delay for sound propagates from target to the ith robot, s(t) is a scalar denoting
energy emitted during sampling time t; r(t) coordinates of target during t; ri coordinates of
the ith stationary sensor; gi gain factor of the ith acoustic sensor; α(≈ 2) energy decay factor,
and εi(t) cumulative effects of modeling error of gi, ri, α and the additive observation noise
of yi(t), see Fig. 5.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 5. Acoustic Energy Loss Fitting

3.1.2 RF Waves
Typically, underground mine personnel tracking systems rely more and more upon radio fre-
quency identification (RFID) technologies today. Such a system has basic components includ-
ing readers and tags. The latter is categorized as either passive or active (Ni et al., 2004). As
for coal mine application, a tag is often mounted on a miner’s helmet with his lamp. For a ra-
dio channel, the transmitted signal reaches receiver via multiple paths (Bahl & Padmanabhan,
2000):

P(d) = P(d0) − 10α lg
d
d0

− η (11)

where α indicates loss rate, P(d0) is signal power at reference distance d0 and d transmitter-
receiver distance. The value of P(d0) can be derived empirically or obtained from the wireless
network hardware specifications. In general, η value is derived empirically, see Fig. 6.

3.1.3 Gas
The gas in coal mines will diffuse quickly in closed roadways after gas outburst. The pervasion
process can be described as affecting by some odor point sources. For convenience, they can
be viewed as only one by linear combination. Let the projection of leak point on the ground
be origin, average direction of downwind x-axis, a right hand three-dimensional coordinate
system can be set. Then, we can calculate gas concentration in any point on the ground (z = 0)
following the law (Marques et al., 2006):

C(x, y, t) =
Q

2πσy(x, t)σz(x)
exp{ (y(t) − y0(x, t))2

−2σ2
y (x, t)

} (12)

Swarm Robotics, From Biology to Robotics66

0 50 100 150 200
50

55

60

65

70

75

80

85

90

95

r / m

P
 /

dB

Free Space
Real Space

Fig. 6. Log-Normal Signal Loss Distribution

where Q represents release rate, plume center y0, width w and height h as a function of time
t and downwind distance x. σy(x, t) = w(x,t)√

2π
, σz(x) = h(x)√

2π
. Fig. 7 shows an example of

a time averaged Gaussian plume (Marques et al., 2006). Further, the heterogeneous signals
distribution in search environment can be shown in Fig. 8.

X / m

Y
 /

m

0 50 100 150 200
−8

−6

−4

−2

0

2

4

6

8

Fig. 7. Gas Concentration Contours on the Ground after Emitted Sufficient Long Time

3.1.4 Signals Propagation Space
The space is divided into six sub-areas (numbered Area 1–6) according to the distribution of
signals. The lines in Fig. 8 represent the minimum detectable signal contours corresponding
to thresholds 0.0016 kg/m3, −90 dBm and to maximum detectable ranges 200 m, 45 m respec-
tively Li & Hu (2003); Ni et al. (2004). It is need to point out that the sound threshold is not
given definitely because it is closely related to the sensor sensitivity. Hence, given a specific
power (milliwatt magnitude) of call-for-help in a loud voice, our attention lines in finding
how far the emitted sound signals can reach. In simulation, we will make an experiential but
reasonable assumption on this value.

X / m

Y
 /

m

0 50 100 150 200
−100

−80

−60

−40

−20

0

20

40

60

80

100
gas
voice
RF
target

Fig. 8. Signals Distribution in Search Space

3.2 Fusion
Different types of signals are presented in different forms. For instance, gas diffusion distance
may be up to several hundreds of meters (Marques et al., 2006); the detectable range of RF
waves with frequency f = 7.5 s emitted by active tags approach to 150 ft (≈ 45 m) (Ni et al.,
2004) and the localization accuracy with RF RSSI-based method can be 2 m; the detectable
range of sound usually reaches not more than 30 m (Li & Hu, 2003), and the estimation error
with sound RSSI method may be up to 50%. Therefore, detectable range, statistical properties,
localization types and accuracy have to be considered simultaneously in signals fusion.

3.2.1 Sensing Event
Introduce a 2-value logic into describing perceptual process so that we can define perception
event in advance. Let Ai (i = GAS, RF, CALL) be perceptual event in event space Ω = {0, 1}.
Then Ai = 1 represents detect-success (beyond threshold) and Ai = 0 detect-failure. At the
same time, we normalize those measurement readings beyond threshold to Nmi ∈ (0, 1).
Clearly, events Ai and Aj (i �= j) are mutually independent and the probability of each event
can be calculated with its statistical properties. Further, let (AiGAS(t), AiRF(t), AiCALL(t)) be
the joint sensing event of robot Ri at time t, then there may be 23 = 8 joint events according to
the time characteristic of signals distribution. Again, consider the spatial distribution of sig-
nals. Those robots in signal blind area (Area 1) attempt to capture signal clues independently
in a spiral move manner to further search for target locally (Hayes, 2002; Marques et al., 2006),
without directed by swarm intelligence principle locally, while the robots in Area 2–6 do so
(Marques et al., 2006). Thus, it is easy to know that there are six joint events everywhere ex-
cept source. The possible joint events occurred in each sub-area are listed in Tab. 2. These joint
events can be encoded with 3-bit binary numbers. Since the source is characteristic of such
encode, we can also express it with 3 × 1 “characteristic” vector �C. Finally, take the above
Nmis of measurement readings to replace the corresponding elements “1” in vector �V.

Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion and Path Planning 67

0 50 100 150 200
50

55

60

65

70

75

80

85

90

95

r / m

P
 /

dB

Free Space
Real Space

Fig. 6. Log-Normal Signal Loss Distribution

where Q represents release rate, plume center y0, width w and height h as a function of time
t and downwind distance x. σy(x, t) = w(x,t)√

2π
, σz(x) = h(x)√

2π
. Fig. 7 shows an example of

a time averaged Gaussian plume (Marques et al., 2006). Further, the heterogeneous signals
distribution in search environment can be shown in Fig. 8.

X / m

Y
 /

m

0 50 100 150 200
−8

−6

−4

−2

0

2

4

6

8

Fig. 7. Gas Concentration Contours on the Ground after Emitted Sufficient Long Time

3.1.4 Signals Propagation Space
The space is divided into six sub-areas (numbered Area 1–6) according to the distribution of
signals. The lines in Fig. 8 represent the minimum detectable signal contours corresponding
to thresholds 0.0016 kg/m3, −90 dBm and to maximum detectable ranges 200 m, 45 m respec-
tively Li & Hu (2003); Ni et al. (2004). It is need to point out that the sound threshold is not
given definitely because it is closely related to the sensor sensitivity. Hence, given a specific
power (milliwatt magnitude) of call-for-help in a loud voice, our attention lines in finding
how far the emitted sound signals can reach. In simulation, we will make an experiential but
reasonable assumption on this value.

X / m

Y
 /

m

0 50 100 150 200
−100

−80

−60

−40

−20

0

20

40

60

80

100
gas
voice
RF
target

Fig. 8. Signals Distribution in Search Space

3.2 Fusion
Different types of signals are presented in different forms. For instance, gas diffusion distance
may be up to several hundreds of meters (Marques et al., 2006); the detectable range of RF
waves with frequency f = 7.5 s emitted by active tags approach to 150 ft (≈ 45 m) (Ni et al.,
2004) and the localization accuracy with RF RSSI-based method can be 2 m; the detectable
range of sound usually reaches not more than 30 m (Li & Hu, 2003), and the estimation error
with sound RSSI method may be up to 50%. Therefore, detectable range, statistical properties,
localization types and accuracy have to be considered simultaneously in signals fusion.

3.2.1 Sensing Event
Introduce a 2-value logic into describing perceptual process so that we can define perception
event in advance. Let Ai (i = GAS, RF, CALL) be perceptual event in event space Ω = {0, 1}.
Then Ai = 1 represents detect-success (beyond threshold) and Ai = 0 detect-failure. At the
same time, we normalize those measurement readings beyond threshold to Nmi ∈ (0, 1).
Clearly, events Ai and Aj (i �= j) are mutually independent and the probability of each event
can be calculated with its statistical properties. Further, let (AiGAS(t), AiRF(t), AiCALL(t)) be
the joint sensing event of robot Ri at time t, then there may be 23 = 8 joint events according to
the time characteristic of signals distribution. Again, consider the spatial distribution of sig-
nals. Those robots in signal blind area (Area 1) attempt to capture signal clues independently
in a spiral move manner to further search for target locally (Hayes, 2002; Marques et al., 2006),
without directed by swarm intelligence principle locally, while the robots in Area 2–6 do so
(Marques et al., 2006). Thus, it is easy to know that there are six joint events everywhere ex-
cept source. The possible joint events occurred in each sub-area are listed in Tab. 2. These joint
events can be encoded with 3-bit binary numbers. Since the source is characteristic of such
encode, we can also express it with 3 × 1 “characteristic” vector �C. Finally, take the above
Nmis of measurement readings to replace the corresponding elements “1” in vector �V.

Swarm Robotics, From Biology to Robotics68

3.2.2 Virtual Communication
View signals measurement as continuous communication between robots and target. In this
case, each robot possesses its own channel, with source (target) and destination (robot). The
individual robot discretizes three types of measurement readings to 1-bit binary digit respec-
tively with corresponding threshold. As for the same signal emitted from source, robots in
different sub-areas may obtain different results due to the effect of distance. Consequently,
while there are 23 = 8 encodes of full permutation in source, the “received” encodes by robots
in different sub-areas may vary. We suppose the duration of emission by target can guarantee
the detection success in sampling period (400 ms here). But the transmission time from source
to destination is small enough so as to be ignored. Thus, the detection process can transfer
continuous information to time- and amplitude-discrete random signal series. Since we sup-
pose ∆t be sufficient small interval, the above perception event occurs once at most in every
sampling process.

3.2.3 Information Entropy
We can calculate the information entropy from the received information encodes through vir-
tual communication process.

• Gases. Robots start to locally search for target as soon as gas can be sensed in
global search stage (Marques et al., 2006). As to the continuous gas diffusion, event
AGAS = 1 will occur at any time t in Area 2–4 (Hayes, 2002; Marques et al., 2006). Then
P{AGAS(t)} = 1, i.e., this information is decisive, say, H(XGAS) = 0.

• RFID Waves. The perception process of RF signals {XRF(t), t ≥ 0} can be viewed as
Poisson process with intensity λRF. As the process has stationary independent incre-
ment, those equal intervals may lead to equal probability of ARF = 1. Suppose the
sampling period ∆t is sufficient small time interval and satisfies the sampling theory.
The event ARF = 1 occurs once at most in every sampling. Since events ARF = 1
and ARF = 0 are contrary ones, then we can draw a conclusion P{ARF(t) = 0} =
1 − P{ARF(t) = 1}. And the relationship can further be captured by computing proba-
bilities:




P{ARF(t) = 1} = e−λRF∆tλRF∆t
P{ARF(t) = 0} = e−λRF∆t

eλRF∆t = λRF∆t + 1
(13)

“Emitted” Sub-Area Possible Event “Received”

111 1 (0, 0, 0) 000
111 2 (1, 0, 0) 100
111 3 (1, 0, 0), (1, 1, 0) 100, 101
111 4 (1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1) 100, 110, 101, 111
111 5 (0, 0, 0), (0, 1, 0) 000, 010
111 6 (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1) 000, 001, 010, 011

Table 2. Joint Event Encodes (AGAS, ARF, ACALL) in Search Space

Signal Entropy Detectable Range(m) Localization Type Accuracy (m)

GAS 0 200 indirect 200

RF 0.0156 45 direct 2

CALL 0.2055 30 direct 15

Table 3. Characteristics of Signals Propagated in Search Space

Accordingly, the entropy of RF signals in information source at t can be calculated with
the above conclusion:

H(XRF) = λRF∆t + (e−λRF∆t − 1) log(λRF∆t) (14)

• Sound of Call-for-Help. The detected sound of call for help {XC(t), t ≥ 0} be Poisson
process with intensity λC. Similarly, we can determine the probability detect-success
and detect-failure of call for help to further obtain the entropy of such sound at any
time t:

H(XC) = λC∆t + (e−λC∆t − 1) log(λC∆t) (15)

3.2.4 Weight
A criterion to signals fusion can be used by robot. Among all factors, apart from information
entropy, the localization type and accuracy with RSSI-based method should also be consid-
ered. For instance, gas source is not same as the target location, i.e., we localize target in-
directly by localizing gas source based on the fact that one should move quickly upwind in
risk avoiding poison gas leakage. Consequently, such estimate may get the worst accuracy
(200 m assumed). While the RSSI-based estimate with RF or sound intensity can localize tar-
get directly. But the two types of signals differ in accuracy of location estimate, see Tab. 3 for
details (Li & Hu, 2003; Marques et al., 2006; Ni et al., 2004). As shown in Eq. (16), the entropy,
localization type and accuracy are all required to be integrated by weighted sums.

wi =
aH(Xi)

∑
i

H(Xi)
+ bκ +

c
τi ∑

i

1
τi

, i = GAS, RF, CALL (16)

where logic variable κ represents localization type, “indirect” is assigned 0 and “direct” 1. τ is
localization accuracy and a, b, c ∈ (0, 1] are all positive coefficients that need to be determined
empirically. Then, we can take three weight values as elements to construct a 1 × 3 vector �W.

3.2.5 Signals Fusion
An fusion mechanism for making decision on the best positions is discussed here, being suit-
able for deciding on cognitive of individual and social of swarm. The mechanism can be
expressed with weighted sums operation using vectors �V and �W, i.e., obtaining the fusion by
calculating the inner product of two vectors f usion = �V(1×3) · �W(3×1).

Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion and Path Planning 69

3.2.2 Virtual Communication
View signals measurement as continuous communication between robots and target. In this
case, each robot possesses its own channel, with source (target) and destination (robot). The
individual robot discretizes three types of measurement readings to 1-bit binary digit respec-
tively with corresponding threshold. As for the same signal emitted from source, robots in
different sub-areas may obtain different results due to the effect of distance. Consequently,
while there are 23 = 8 encodes of full permutation in source, the “received” encodes by robots
in different sub-areas may vary. We suppose the duration of emission by target can guarantee
the detection success in sampling period (400 ms here). But the transmission time from source
to destination is small enough so as to be ignored. Thus, the detection process can transfer
continuous information to time- and amplitude-discrete random signal series. Since we sup-
pose ∆t be sufficient small interval, the above perception event occurs once at most in every
sampling process.

3.2.3 Information Entropy
We can calculate the information entropy from the received information encodes through vir-
tual communication process.

• Gases. Robots start to locally search for target as soon as gas can be sensed in
global search stage (Marques et al., 2006). As to the continuous gas diffusion, event
AGAS = 1 will occur at any time t in Area 2–4 (Hayes, 2002; Marques et al., 2006). Then
P{AGAS(t)} = 1, i.e., this information is decisive, say, H(XGAS) = 0.

• RFID Waves. The perception process of RF signals {XRF(t), t ≥ 0} can be viewed as
Poisson process with intensity λRF. As the process has stationary independent incre-
ment, those equal intervals may lead to equal probability of ARF = 1. Suppose the
sampling period ∆t is sufficient small time interval and satisfies the sampling theory.
The event ARF = 1 occurs once at most in every sampling. Since events ARF = 1
and ARF = 0 are contrary ones, then we can draw a conclusion P{ARF(t) = 0} =
1 − P{ARF(t) = 1}. And the relationship can further be captured by computing proba-
bilities:




P{ARF(t) = 1} = e−λRF∆tλRF∆t
P{ARF(t) = 0} = e−λRF∆t

eλRF∆t = λRF∆t + 1
(13)

“Emitted” Sub-Area Possible Event “Received”

111 1 (0, 0, 0) 000
111 2 (1, 0, 0) 100
111 3 (1, 0, 0), (1, 1, 0) 100, 101
111 4 (1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1) 100, 110, 101, 111
111 5 (0, 0, 0), (0, 1, 0) 000, 010
111 6 (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1) 000, 001, 010, 011

Table 2. Joint Event Encodes (AGAS, ARF, ACALL) in Search Space

Signal Entropy Detectable Range(m) Localization Type Accuracy (m)

GAS 0 200 indirect 200

RF 0.0156 45 direct 2

CALL 0.2055 30 direct 15

Table 3. Characteristics of Signals Propagated in Search Space

Accordingly, the entropy of RF signals in information source at t can be calculated with
the above conclusion:

H(XRF) = λRF∆t + (e−λRF∆t − 1) log(λRF∆t) (14)

• Sound of Call-for-Help. The detected sound of call for help {XC(t), t ≥ 0} be Poisson
process with intensity λC. Similarly, we can determine the probability detect-success
and detect-failure of call for help to further obtain the entropy of such sound at any
time t:

H(XC) = λC∆t + (e−λC∆t − 1) log(λC∆t) (15)

3.2.4 Weight
A criterion to signals fusion can be used by robot. Among all factors, apart from information
entropy, the localization type and accuracy with RSSI-based method should also be consid-
ered. For instance, gas source is not same as the target location, i.e., we localize target in-
directly by localizing gas source based on the fact that one should move quickly upwind in
risk avoiding poison gas leakage. Consequently, such estimate may get the worst accuracy
(200 m assumed). While the RSSI-based estimate with RF or sound intensity can localize tar-
get directly. But the two types of signals differ in accuracy of location estimate, see Tab. 3 for
details (Li & Hu, 2003; Marques et al., 2006; Ni et al., 2004). As shown in Eq. (16), the entropy,
localization type and accuracy are all required to be integrated by weighted sums.

wi =
aH(Xi)

∑
i

H(Xi)
+ bκ +

c
τi ∑

i

1
τi

, i = GAS, RF, CALL (16)

where logic variable κ represents localization type, “indirect” is assigned 0 and “direct” 1. τ is
localization accuracy and a, b, c ∈ (0, 1] are all positive coefficients that need to be determined
empirically. Then, we can take three weight values as elements to construct a 1 × 3 vector �W.

3.2.5 Signals Fusion
An fusion mechanism for making decision on the best positions is discussed here, being suit-
able for deciding on cognitive of individual and social of swarm. The mechanism can be
expressed with weighted sums operation using vectors �V and �W, i.e., obtaining the fusion by
calculating the inner product of two vectors f usion = �V(1×3) · �W(3×1).

Swarm Robotics, From Biology to Robotics70

3.2.6 Description of Fusion Algorithm
A full-distributed fusion algorithm run on each individual robot can be presented. First, we
assume each robot has an unique ID, carrying a set of sensors and a on-board fusion module
so as to measure signals and fuse them independently. Besides, all sensors are assumed to
react to signals in sufficient short time. Finally, we design a character structure denoting as
“ID”+“Position”+“ f usion”, which can be viewed as the communication protocol. As for the
local communication hardware, it can be achieved by wireless transmission systems, like RF
or infrared.

Algorithm 1 Real-Time Heterogeneous Signals Fusion
1: Input: sensor readings
2: Output: the best-found position and fusion of signals
3: confirm ID and current position iPos;
4: initialize
5: set counter t ← 0;
6: set (AiGAS, AiRF, AiCALL)t=0 = 000;
7: set f usion = 0;
8: construct “ID”+“Position”+“ f usion”;{communication protocol}
9: set best position of itself ibPos ← iPos ;

10: set best position of neighborhood sbPos ← iPos;
11: repeat
12: make measurement;
13: discretize to 0 or 1 by comparing threshold value;
14: format data with characteristic structure;
15: if (AiGAS, AiRF, AiCALL)t = 000 then
16: keep silence;{do nothing}
17: else
18: elect ibPos and update;
19: broadcast data within its neighborhood;
20: end if
21: listen for others;
22: if receive data containing (AjGAS, AjRF, AjCALL) �= 000 then
23: elect sbPos and update;
24: end if
25: t ← t + 1;
26: until termination condition is met

4. Path Planning

In PSO-type swarm robotic search algorithm, each individual robot makes decision on its ex-
pected destination at every time step as its current target to move towards in a full distributed
fashion by combining its own inertia and cognitive experience as well as experience of swarm.
The experience of robot itself and its neighbors depends on fitness evaluate, i.e., target signals
measurement and fusion, which is discussed in the above section. In other words, the trajec-
tory of each robot “searching” for target is formed by linking a series of expected positions
orderly.

Similar to single autonomous robot, path planning of individual robots in swarm robotic sys-
tem also involves how to move towards their own goals with static/dynamic obstacle avoid-
ance (Warren, 1990). Performed in an iterative manner, artificial potential field (APF) method
is usually employed for such task in controlling autonomous robot (Khatib, 1986). Theoret-
ically, robot moves in the direction of the resultant of the attraction force pulling the robot
towards the goal, and the repulsive force pushing the robot away from the obstacles. As
expected, the robot stops moving after reaching the goal position. Unfortunately, it always
suffers from local minima where if trapped (Zou & Zhu, 2003). Looking for a local-minimum-
free solution has become a central concern in this approach. Aiming at the problem solving,
some modified APF methods are proposed to overcome local minimum. The key ideas may
be fallen into two categories: one establishes new potential functions with a few or even no
local minima (Ge & Cui, 2000; Warren, 1990); the other uses some techniques to escape from
local minima, including random walk (Janabi-Sharifi & Vinke, 1993), wall following (Boren-
stein & Koren, 1989), and other heuristic methods (Singh et al., 1996). Except for these efforts,
Jugh et al. apply the PSO algorithm to path optimization of multiple robots (Pugh & Marti-
noli, 2006). However, above methods are incompatible with the case of swarm robotic search.
New difficulties arise when we apply APF method to swarm robots path planning. One major
challenge is to bridge the high-level task planning and the low-level path planning and inte-
grate them into one framework (Ren, 2005). Thus we combine APF method and PSO to plan
path towards target with collision avoidance because of low computational cost and better
real-time performance.

4.1 Traditional APF
The nature of APF method lines in defining the motion space for robot as a virtual potential
filed U(x) including virtual gravitational field UG(x) and repulsion field UR(x), in which
robot is attracted by target and repelled by obstacles. Then, the resultant force field can be
defined with (Khatib, 1986):

U(x) = UG(x) + UR(x) (17)

Meanwhile, we can further define attractive force FG(x) and repulsive force FR(x) as the neg-
ative gradient of the virtual gravitational field and repulsion field respectively. Therefore, the
virtual force F(x) acted by the virtual potential field can be derived using space dynamics
equation and Lagrange equation:




F(x) = FG(x) + FR(x)
FG(x) = −∇(UG(x))
FR(x) = −∇(UR(x))

(18)

Clearly, the direction of robot motion depends upon the direction of F(x) (Khatib, 1986).
Although the traditional APF method has the virtue of being the easiest to implement, it
has some limitations above yet. At first, the traditional APF method is applied to the case
of global environment information being known rather than the case of environment being
partly known or even unknown because the virtual potential field is computationally ob-
tained and what robot sensing environment with its own equipped sensors is not supported.
Second, the inherent disadvantage of traditional APF method comes through in being easily
trapped to local minima and in target being not able to reach. It is important that the tra-
ditional method has to be modified in accordance with robot sensing environment with its

Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion and Path Planning 71

3.2.6 Description of Fusion Algorithm
A full-distributed fusion algorithm run on each individual robot can be presented. First, we
assume each robot has an unique ID, carrying a set of sensors and a on-board fusion module
so as to measure signals and fuse them independently. Besides, all sensors are assumed to
react to signals in sufficient short time. Finally, we design a character structure denoting as
“ID”+“Position”+“ f usion”, which can be viewed as the communication protocol. As for the
local communication hardware, it can be achieved by wireless transmission systems, like RF
or infrared.

Algorithm 1 Real-Time Heterogeneous Signals Fusion
1: Input: sensor readings
2: Output: the best-found position and fusion of signals
3: confirm ID and current position iPos;
4: initialize
5: set counter t ← 0;
6: set (AiGAS, AiRF, AiCALL)t=0 = 000;
7: set f usion = 0;
8: construct “ID”+“Position”+“ f usion”;{communication protocol}
9: set best position of itself ibPos ← iPos ;

10: set best position of neighborhood sbPos ← iPos;
11: repeat
12: make measurement;
13: discretize to 0 or 1 by comparing threshold value;
14: format data with characteristic structure;
15: if (AiGAS, AiRF, AiCALL)t = 000 then
16: keep silence;{do nothing}
17: else
18: elect ibPos and update;
19: broadcast data within its neighborhood;
20: end if
21: listen for others;
22: if receive data containing (AjGAS, AjRF, AjCALL) �= 000 then
23: elect sbPos and update;
24: end if
25: t ← t + 1;
26: until termination condition is met

4. Path Planning

In PSO-type swarm robotic search algorithm, each individual robot makes decision on its ex-
pected destination at every time step as its current target to move towards in a full distributed
fashion by combining its own inertia and cognitive experience as well as experience of swarm.
The experience of robot itself and its neighbors depends on fitness evaluate, i.e., target signals
measurement and fusion, which is discussed in the above section. In other words, the trajec-
tory of each robot “searching” for target is formed by linking a series of expected positions
orderly.

Similar to single autonomous robot, path planning of individual robots in swarm robotic sys-
tem also involves how to move towards their own goals with static/dynamic obstacle avoid-
ance (Warren, 1990). Performed in an iterative manner, artificial potential field (APF) method
is usually employed for such task in controlling autonomous robot (Khatib, 1986). Theoret-
ically, robot moves in the direction of the resultant of the attraction force pulling the robot
towards the goal, and the repulsive force pushing the robot away from the obstacles. As
expected, the robot stops moving after reaching the goal position. Unfortunately, it always
suffers from local minima where if trapped (Zou & Zhu, 2003). Looking for a local-minimum-
free solution has become a central concern in this approach. Aiming at the problem solving,
some modified APF methods are proposed to overcome local minimum. The key ideas may
be fallen into two categories: one establishes new potential functions with a few or even no
local minima (Ge & Cui, 2000; Warren, 1990); the other uses some techniques to escape from
local minima, including random walk (Janabi-Sharifi & Vinke, 1993), wall following (Boren-
stein & Koren, 1989), and other heuristic methods (Singh et al., 1996). Except for these efforts,
Jugh et al. apply the PSO algorithm to path optimization of multiple robots (Pugh & Marti-
noli, 2006). However, above methods are incompatible with the case of swarm robotic search.
New difficulties arise when we apply APF method to swarm robots path planning. One major
challenge is to bridge the high-level task planning and the low-level path planning and inte-
grate them into one framework (Ren, 2005). Thus we combine APF method and PSO to plan
path towards target with collision avoidance because of low computational cost and better
real-time performance.

4.1 Traditional APF
The nature of APF method lines in defining the motion space for robot as a virtual potential
filed U(x) including virtual gravitational field UG(x) and repulsion field UR(x), in which
robot is attracted by target and repelled by obstacles. Then, the resultant force field can be
defined with (Khatib, 1986):

U(x) = UG(x) + UR(x) (17)

Meanwhile, we can further define attractive force FG(x) and repulsive force FR(x) as the neg-
ative gradient of the virtual gravitational field and repulsion field respectively. Therefore, the
virtual force F(x) acted by the virtual potential field can be derived using space dynamics
equation and Lagrange equation:




F(x) = FG(x) + FR(x)
FG(x) = −∇(UG(x))
FR(x) = −∇(UR(x))

(18)

Clearly, the direction of robot motion depends upon the direction of F(x) (Khatib, 1986).
Although the traditional APF method has the virtue of being the easiest to implement, it
has some limitations above yet. At first, the traditional APF method is applied to the case
of global environment information being known rather than the case of environment being
partly known or even unknown because the virtual potential field is computationally ob-
tained and what robot sensing environment with its own equipped sensors is not supported.
Second, the inherent disadvantage of traditional APF method comes through in being easily
trapped to local minima and in target being not able to reach. It is important that the tra-
ditional method has to be modified in accordance with robot sensing environment with its

Swarm Robotics, From Biology to Robotics72

sensors. The robot navigates in search space without obstacle collision depends completely
upon equipped sensors through collecting measurement readings to judge states including
obstacles distribution and possible target position.

4.2 Sensor-Based APF
Generally, when searching for target in unknown environment, the environment map is partly
known or even unknown. In this case, the robot behaviors for obstacle avoidance have to rely
on continuous local path planning by means of locally sensing surroundings with equipped
sensors. As robot moves within search space, the obstacles surrounding robot are inevitably in
different conditions. Learning from the traditional APF method to improve real-time property,
we can integrate it with the multi-sensor structure of robot to construct virtual potential force
with change of sensor readings. Hence, it is need to make some modifications to Eq. (18) based
on above structural sensor model, see Fig. 2.




F′
i (x) = F′

iG(x) + F′
iO(x)

F′
iG(x) = x′i − xi

F′
iO(x) = ∑16

j=1
−−→
∆Sij

∆Sij = SR − Sij

(19)

where F′
i (x) be the resultant force imposed on robot Ri in constructed virtual potential field,

F′
iG(x) the force attracted by the expected target position, and F′

iO(x) the force repelled by
surrounding obstacles. Furthermore, SR be the maximum detection range of all sensors and
Sij the current distance reading of sensor j,

−−→
∆Sij represents the increment of the jth sensor

reading. Note that
−−→
∆Sij be a vector because of the directionality of sensors.

4.3 Control System Architecture
To decide input commands (vi, ωi)T of individual robots every time step, the control archi-
tecture including swarm and individual levels should be deterministic. From swarm aspect,
the architecture is distributed and the PSO-type algorithm runs on each robot. In individual’s
eyes, robot has a two-level virtual control architecture, which may refer to (Oriolo et al., 2002)
for details. Our designed algorithm is at high-level layer, running with a sampling time of
∆t = 100 ms. While the low-level layer is charge of analyzing and executing the velocity com-
mands from upper level. The outputs of algorithm are the command series (vi, ωi)T in every
time step. As is shown in Eq. (9), vi(t + ∆t) and ωi(t + ∆t) are the required control inputs of
linear and angular velocity at the next time step respectively. While vi(t) and ωi(t) are the
obtained current variables by sampling.

4.4 Description of Control Algorithm
It is shown that the PSO-type algorithm is capable of controlling individual robots to move
about in space for target search with obstacle avoidance according to the modified sensor-
based APF method. Under the conditions of limited sense and local interaction in unknown
environment, a valid navigation algorithm can be designed for target search with collision
avoidance. Such idea can be implemented in accordance with the three phases below:

• Compute the Expected Positions. In terms of the model of swarm robotic system, i.e.,
Eq. (7), the respected velocities and positions of each robot at time step t can be compu-
tational decided by means of interactions within its own neighborhood.

Target

Fig. 9. Schematic of Virtual Force Acted on Robot with Proximity Sensor Readings

• Decide Virtual Force. With the modified sensor-based APF model, we can construct
a potential field and get the virtual force in this field. The specific way is to take the
expected position of robot at time step as the current temporary target which will attract
the robot, while the robot will be repelled by the detected static or dynamic obstacles.

• Compute the Real Positions. As the velocity of robot at time t + 1 is gotten, the position
of robot at time t + 1 can be computationally obtained according to the kinematics of
robot.

A full distributed PSO-type algorithm for target search is developed, which can be imple-
mented on each robot in parallel. Without loss of generality, we can describe the algorithm
run on robot Ri as Algorithm 2.

5. Simulation and Discussions

To elaborate how to fuse the specific heterogeneous signals and how to decide the best posi-
tions, the simulations are designed and conducted for the purpose. First, virtual signal gen-
erators are arranged where same as target situates, emitting signals following their own time
characteristic. Then, a series of detection points are set in signal Area 1–6. Our task is to inves-
tigate what happened in each information sink (robot) when different combination of signals
is emitted from source by virtually measuring and fusing. We observe for sufficient long time
until all eight encodes transmitted from source. Then we try to find the relationship between
distance and fusion result.

5.1 Signals Generating
Consider the properties of a given Poisson process with intensity λ. The successive coming
time of events obey exponential distribution with mean 1

λ . We can empirically set the value in
some interval, for example, the upper bound and lower bound can set to 0.01 and 0.001 respec-
tively, i.e., λC ∈ (0.001, 0.01), while the intensity of RF signals can be λRF = 0.1333 according
to its primitive definition, which reflect the temporal characteristics of target signals.

Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion and Path Planning 73

sensors. The robot navigates in search space without obstacle collision depends completely
upon equipped sensors through collecting measurement readings to judge states including
obstacles distribution and possible target position.

4.2 Sensor-Based APF
Generally, when searching for target in unknown environment, the environment map is partly
known or even unknown. In this case, the robot behaviors for obstacle avoidance have to rely
on continuous local path planning by means of locally sensing surroundings with equipped
sensors. As robot moves within search space, the obstacles surrounding robot are inevitably in
different conditions. Learning from the traditional APF method to improve real-time property,
we can integrate it with the multi-sensor structure of robot to construct virtual potential force
with change of sensor readings. Hence, it is need to make some modifications to Eq. (18) based
on above structural sensor model, see Fig. 2.




F′
i (x) = F′

iG(x) + F′
iO(x)

F′
iG(x) = x′i − xi

F′
iO(x) = ∑16

j=1
−−→
∆Sij

∆Sij = SR − Sij

(19)

where F′
i (x) be the resultant force imposed on robot Ri in constructed virtual potential field,

F′
iG(x) the force attracted by the expected target position, and F′

iO(x) the force repelled by
surrounding obstacles. Furthermore, SR be the maximum detection range of all sensors and
Sij the current distance reading of sensor j,

−−→
∆Sij represents the increment of the jth sensor

reading. Note that
−−→
∆Sij be a vector because of the directionality of sensors.

4.3 Control System Architecture
To decide input commands (vi, ωi)T of individual robots every time step, the control archi-
tecture including swarm and individual levels should be deterministic. From swarm aspect,
the architecture is distributed and the PSO-type algorithm runs on each robot. In individual’s
eyes, robot has a two-level virtual control architecture, which may refer to (Oriolo et al., 2002)
for details. Our designed algorithm is at high-level layer, running with a sampling time of
∆t = 100 ms. While the low-level layer is charge of analyzing and executing the velocity com-
mands from upper level. The outputs of algorithm are the command series (vi, ωi)T in every
time step. As is shown in Eq. (9), vi(t + ∆t) and ωi(t + ∆t) are the required control inputs of
linear and angular velocity at the next time step respectively. While vi(t) and ωi(t) are the
obtained current variables by sampling.

4.4 Description of Control Algorithm
It is shown that the PSO-type algorithm is capable of controlling individual robots to move
about in space for target search with obstacle avoidance according to the modified sensor-
based APF method. Under the conditions of limited sense and local interaction in unknown
environment, a valid navigation algorithm can be designed for target search with collision
avoidance. Such idea can be implemented in accordance with the three phases below:

• Compute the Expected Positions. In terms of the model of swarm robotic system, i.e.,
Eq. (7), the respected velocities and positions of each robot at time step t can be compu-
tational decided by means of interactions within its own neighborhood.

Target

Fig. 9. Schematic of Virtual Force Acted on Robot with Proximity Sensor Readings

• Decide Virtual Force. With the modified sensor-based APF model, we can construct
a potential field and get the virtual force in this field. The specific way is to take the
expected position of robot at time step as the current temporary target which will attract
the robot, while the robot will be repelled by the detected static or dynamic obstacles.

• Compute the Real Positions. As the velocity of robot at time t + 1 is gotten, the position
of robot at time t + 1 can be computationally obtained according to the kinematics of
robot.

A full distributed PSO-type algorithm for target search is developed, which can be imple-
mented on each robot in parallel. Without loss of generality, we can describe the algorithm
run on robot Ri as Algorithm 2.

5. Simulation and Discussions

To elaborate how to fuse the specific heterogeneous signals and how to decide the best posi-
tions, the simulations are designed and conducted for the purpose. First, virtual signal gen-
erators are arranged where same as target situates, emitting signals following their own time
characteristic. Then, a series of detection points are set in signal Area 1–6. Our task is to inves-
tigate what happened in each information sink (robot) when different combination of signals
is emitted from source by virtually measuring and fusing. We observe for sufficient long time
until all eight encodes transmitted from source. Then we try to find the relationship between
distance and fusion result.

5.1 Signals Generating
Consider the properties of a given Poisson process with intensity λ. The successive coming
time of events obey exponential distribution with mean 1

λ . We can empirically set the value in
some interval, for example, the upper bound and lower bound can set to 0.01 and 0.001 respec-
tively, i.e., λC ∈ (0.001, 0.01), while the intensity of RF signals can be λRF = 0.1333 according
to its primitive definition, which reflect the temporal characteristics of target signals.

Swarm Robotics, From Biology to Robotics74

Algorithm 2 Path Planning for Swarm Robots in A Full-Distributed Way
1: initialize
2: set counter k ← 0;
3: initialize constants;
4: initialize vi

k, xi
k;

5: initialize position of target;
6: initialize robot’s own cognition
7: make measurement Ii

k;
8: Ii

max ← Ii
k;

9: pi
k ← xi

k;
10: initialize shared information
11: Ig

max ← Ii
k;

12: pg
k ← xi

k;
13: confirm index of best individual;
14: repeat
15: k ← k + 1;
16: communicate among neighborhood
17: confirm neighborhood;
18: for j = 1 to number_o f _neighbors do
19: compute I j

k;

20: Ig
max ← max(Ii

k, I j
k);

21: pg
k ← xm

k , argm max{I(xm
k), m ∈ (i, j)};

22: endfor
23: compute expected velocity and position
24: vi

k+1 ← wkvi
k + c1r1(pi

k − xi
k) + c2r2(pg

k − xi
k);

25: vi
k+∆k ← vi

k + Ki(vi
k+1 − vi

k);

26: xi
k+∆k ← xi

k + vi
k+∆k∆k;

27: ξk ← c3ξk;{0 < c3 < 1}
28: compute velocity with kinematics
29: vi

k+∆k ← min(vmax, vi
k+∆k);

30: compute ωi
k+∆k;

31: if shared information updated by neighbor then
32: compute next expected position;
33: endif
34: until succeed in search

5.2 Deployment of Measuring Points
We set a series of measuring points, assigning one with each sub-area. Different points are
different far away from the source. Note that a pair of points in different areas having the
same distance value are arranged to study the relation between fusions at the same time.

5.3 Main Parameter Settings
We simulate signals fusion using parameter configuration a = 1, b = 0.001, c = 1, λC =
0.2055, λRF = 0.0156. For convenience, target is fixed to (0, 0) all time and the coordinates of
six measuring points are (100, 40), (150, 0), (40, 0), (20, 0), (0, 35), (0, 20) orderly. Mean-
while, we focus on if the coverage of all joint events occur in sufficient long time rather than
the moments.

5.4 Map Processing
In study on path planning of autonomous robotics, how to represent the working space, i.e.,
how to model the space is one of the important problems. Based on the difference of sensing
to environment, modeling approaches to known or unknown map fall into two ones. Here we
model working space for swarm robots with digit image processing technology. The obstacle
information relative to each point in search space is expressed with a two-dimensional arrays.
Of representative symbols, 0 represents passable point and 1 passless. The Fig. 10 is the
example of mapping processing.

(a) Original Map

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 0

0 0 0

0

0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0

00

00

0

0

0

00

0

0

00

0

0

0

1

1

1

1

1 1

1

1 1

1

1

1

1

1 1 1

1 1 1

1

1

1

1

1

1 1

1

1

1

0

0

(b) Digitizing

Fig. 10. Working Space for Swarm Robotic Search

5.5 Obstacle Avoidance Planning
Based on the fusion method, we run the swarm robotic search algorithm having a specific
function of path planning. The unequal sized swarms (N = 3, 5, 8, 10) are used, repeated the

Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion and Path Planning 75

Algorithm 2 Path Planning for Swarm Robots in A Full-Distributed Way
1: initialize
2: set counter k ← 0;
3: initialize constants;
4: initialize vi

k, xi
k;

5: initialize position of target;
6: initialize robot’s own cognition
7: make measurement Ii

k;
8: Ii

max ← Ii
k;

9: pi
k ← xi

k;
10: initialize shared information
11: Ig

max ← Ii
k;

12: pg
k ← xi

k;
13: confirm index of best individual;
14: repeat
15: k ← k + 1;
16: communicate among neighborhood
17: confirm neighborhood;
18: for j = 1 to number_o f _neighbors do
19: compute I j

k;

20: Ig
max ← max(Ii

k, I j
k);

21: pg
k ← xm

k , argm max{I(xm
k), m ∈ (i, j)};

22: endfor
23: compute expected velocity and position
24: vi

k+1 ← wkvi
k + c1r1(pi

k − xi
k) + c2r2(pg

k − xi
k);

25: vi
k+∆k ← vi

k + Ki(vi
k+1 − vi

k);

26: xi
k+∆k ← xi

k + vi
k+∆k∆k;

27: ξk ← c3ξk;{0 < c3 < 1}
28: compute velocity with kinematics
29: vi

k+∆k ← min(vmax, vi
k+∆k);

30: compute ωi
k+∆k;

31: if shared information updated by neighbor then
32: compute next expected position;
33: endif
34: until succeed in search

5.2 Deployment of Measuring Points
We set a series of measuring points, assigning one with each sub-area. Different points are
different far away from the source. Note that a pair of points in different areas having the
same distance value are arranged to study the relation between fusions at the same time.

5.3 Main Parameter Settings
We simulate signals fusion using parameter configuration a = 1, b = 0.001, c = 1, λC =
0.2055, λRF = 0.0156. For convenience, target is fixed to (0, 0) all time and the coordinates of
six measuring points are (100, 40), (150, 0), (40, 0), (20, 0), (0, 35), (0, 20) orderly. Mean-
while, we focus on if the coverage of all joint events occur in sufficient long time rather than
the moments.

5.4 Map Processing
In study on path planning of autonomous robotics, how to represent the working space, i.e.,
how to model the space is one of the important problems. Based on the difference of sensing
to environment, modeling approaches to known or unknown map fall into two ones. Here we
model working space for swarm robots with digit image processing technology. The obstacle
information relative to each point in search space is expressed with a two-dimensional arrays.
Of representative symbols, 0 represents passable point and 1 passless. The Fig. 10 is the
example of mapping processing.

(a) Original Map

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 0

0 0 0

0

0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0

00

00

0

0

0

00

0

0

00

0

0

0

1

1

1

1

1 1

1

1 1

1

1

1

1

1 1 1

1 1 1

1

1

1

1

1

1 1

1

1

1

0

0

(b) Digitizing

Fig. 10. Working Space for Swarm Robotic Search

5.5 Obstacle Avoidance Planning
Based on the fusion method, we run the swarm robotic search algorithm having a specific
function of path planning. The unequal sized swarms (N = 3, 5, 8, 10) are used, repeated the

Swarm Robotics, From Biology to Robotics76

algorithm running for ten times respectively. Then, the statistics about total distance and time
elapsed in different cases are collected to support our presented method.

5.6 Results and Discussions
Conducting the above simulations repeatedly, we can get the following results. And then we
may hold discussions and draw some conclusions.

• The fused values in simulation are shown in Fig. 11, from which robots can “find” out
the best positions by simple election operation. It’s perceptible that the bigger the fusion
value, the nearer the measuring point from target. At the same time, it is observed
that as for No. 4 and No. 6 points, the fusion results are the same in cases of Source =
001, 010, 011, and different in cases of Source = 101, 110, 111 although they are equal to
distance of target. We may explain it in this manner: robots searching for target depend
on measurements because they do not know the position of target. While the two points
are located in different sub-areas, the situation of signals cover is different.

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
Source="000"

Fu
si

on

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
 "001"

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
 "010"

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
 "011"

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
 "100"

Point No.

Fu
si

on

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
 "101"

Point No.
1 2 3 4 5 6

0

0.01

0.02

0.03

0.04
 "110"

Point No.
1 2 3 4 5 6

0

0.01

0.02

0.03

0.04
 "111"

Point No.

Fig. 11. Fusion results at the assigned six measuring points under different encodes of in-
formation source. Note that the title Source=“000” of the left corner sub-figure represents no
GAS, no RF, and no CALL signals are emitted when sampling. One can understand the other
cases in a similar manner. Besides, the fusion is a scalar value without any physical meaning.

• Fig. 12 shows the scenario of two robots decide their respective motion behaviors with
modified APF method to plan paths for obstacle avoidance.

(a) 2-Rob (b) 4-Rob

Fig. 12. Obstacle Avoidance between Unequal Sized Robots with Sensor-Based APF Method

Swarm Size Average Time Average Total Distance

3 278 1930

5 232 2410

8 197 3136

10 184 4380

Table 4. Statistics from Search for Target Simulations

• Fig. 13 shows the scenario of one single robot planning its path using multiple sensor-
based APF method without obstacle collision to search for target successfully under
different conditions of obstacle types.

• Consider the total displacements and time (iterative generations) when the search suc-
ceeds. The statistical results shown in Tab. 4 and the relations between average dis-
tance/generations and swarm size are charted as Fig. 14.

6. Conclusions

As for PSO-type control of swarm robots, the experience both of individual robots and of
population is required. In order to decide the best positions, we take the characteristic infor-
mation of target, such as intensity or concentration of different signals emitted by target, as
the “fitness”. Therefore, the problem of multi-source signals fusion is proposed. To this end,
we model the process of signals measurement with robot sensors as virtual communication.
Then, the detected target signals can be viewed as transmitted encodes with respect to infor-
mation source. We thereupon present some concepts of binary logic and perceptual event to
describe the “communication“ between target and robots. Besides, we also put forward in-
formation entropy-based fusion criteria and priority to fuse signals and election mechanism

Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion and Path Planning 77

algorithm running for ten times respectively. Then, the statistics about total distance and time
elapsed in different cases are collected to support our presented method.

5.6 Results and Discussions
Conducting the above simulations repeatedly, we can get the following results. And then we
may hold discussions and draw some conclusions.

• The fused values in simulation are shown in Fig. 11, from which robots can “find” out
the best positions by simple election operation. It’s perceptible that the bigger the fusion
value, the nearer the measuring point from target. At the same time, it is observed
that as for No. 4 and No. 6 points, the fusion results are the same in cases of Source =
001, 010, 011, and different in cases of Source = 101, 110, 111 although they are equal to
distance of target. We may explain it in this manner: robots searching for target depend
on measurements because they do not know the position of target. While the two points
are located in different sub-areas, the situation of signals cover is different.

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
Source="000"

Fu
si

on

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
 "001"

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
 "010"

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
 "011"

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
 "100"

Point No.

Fu
si

on

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
 "101"

Point No.
1 2 3 4 5 6

0

0.01

0.02

0.03

0.04
 "110"

Point No.
1 2 3 4 5 6

0

0.01

0.02

0.03

0.04
 "111"

Point No.

Fig. 11. Fusion results at the assigned six measuring points under different encodes of in-
formation source. Note that the title Source=“000” of the left corner sub-figure represents no
GAS, no RF, and no CALL signals are emitted when sampling. One can understand the other
cases in a similar manner. Besides, the fusion is a scalar value without any physical meaning.

• Fig. 12 shows the scenario of two robots decide their respective motion behaviors with
modified APF method to plan paths for obstacle avoidance.

(a) 2-Rob (b) 4-Rob

Fig. 12. Obstacle Avoidance between Unequal Sized Robots with Sensor-Based APF Method

Swarm Size Average Time Average Total Distance

3 278 1930

5 232 2410

8 197 3136

10 184 4380

Table 4. Statistics from Search for Target Simulations

• Fig. 13 shows the scenario of one single robot planning its path using multiple sensor-
based APF method without obstacle collision to search for target successfully under
different conditions of obstacle types.

• Consider the total displacements and time (iterative generations) when the search suc-
ceeds. The statistical results shown in Tab. 4 and the relations between average dis-
tance/generations and swarm size are charted as Fig. 14.

6. Conclusions

As for PSO-type control of swarm robots, the experience both of individual robots and of
population is required. In order to decide the best positions, we take the characteristic infor-
mation of target, such as intensity or concentration of different signals emitted by target, as
the “fitness”. Therefore, the problem of multi-source signals fusion is proposed. To this end,
we model the process of signals measurement with robot sensors as virtual communication.
Then, the detected target signals can be viewed as transmitted encodes with respect to infor-
mation source. We thereupon present some concepts of binary logic and perceptual event to
describe the “communication“ between target and robots. Besides, we also put forward in-
formation entropy-based fusion criteria and priority to fuse signals and election mechanism

Swarm Robotics, From Biology to Robotics78

(a) Circular (b) Rectangle

(c) Allotype (d) Complicated

Fig. 13. Single Robot Move to the Potential Target with Path Planning

3 4 5 6 7 8 9 10
0

2000

4000

6000

D
is

ta
nc

e

Swarm Size
3 4 5 6 7 8 9 10

150

200

250

300

G
en

er
at

io
ns

Distance
Generations

Fig. 14. Relations between Average Distance/Generations and Swarm Size

to decide the best positions on the basis of space-time distribution properties of target and
robots. Simulation conducted in closed signal propagation environment indicates the approx-
imate relation between fusion and distance, i.e., the nearer the robot is far away from target,
the higher the fusion of signals. Also, a modified artificial potential field method is proposed
based on the multiple sensor structure for the space resource conflict resolution. The simu-
lation results show the validity of our sensor-based APF method in the process of search for
potential target.

7. References

Bahl P. & Padmanabhan V. (2000). RADAR: An In-Building RF-Based User Location and Track-
ing System. IEEE infocom, Vol. 2, 775-784, ISSN 0743-166X.

Borenstein J. & Koren Y. (1989). Real-Time Obstacle Avoidance for Fact Mobile Robots. IEEE
Transactions on Systems, Man and Cybernetics, Vol. 19, No. 5, 1179-1187, ISSN 1083-
4427.

Campion G.; Bastin G. & Dandrea-Novel B. (1996). Structural Properties and Classification
of Kinematic and Dynamicmodels of Wheeled Mobile Robots. IEEE transactions on
robotics and automation, Vol. 12, No. 1, 47-62, ISSN 1042-296X.

Doctor S.; Venayagamoorthy G. & Gudise V. (2004). Optimal PSO for Collective Robotic Search
Applications, Proceedings of Congress on Evolutionary Computation, pp. 1390-1395, Vol.
2, 2004.

Ge S. & Cui Y. (2000). New Potential Functions for Mobile Robot Path Planning. IEEE Transac-
tions on robotics and automation, Vol. 16, No. 5, 615-620, ISSN 1042-296X.

Hayes A. (2002). Self-Organized Robotic System Design and Autonomous Odor Localization, Ph.D.
thesis, California Institute of Technology, Pasadena, CA, USA.

Hereford J. & Siebold M. (2008). Multi-Robot Search Using A Physically-Embedded Particle
Swarm Optimization. International Journal of Computational Intelligence Research, Vol.
4, No. 2, 197-209, ISSN 0973-1873.

Janabi-Sharifi F. & Vinke D. (1993). Integration of the Artificial Potential Field Approach with
Simulated Annealing for Robot Path Planning. Proceedings of the IEEE International
Symposium on Intelligent Control, pp. 536-541, Chicago, USA.

Jatmiko W.; Sekiyama K. & Fukuda T. (2007). A PSO-Based Mobile Robot for Odor Source
Localization in Dynamic Advection-Diffusion with Obstacles Environment: Theory,
Simulation and Measurement. IEEE Computational Intelligence Magazine, Vol. 2, No. 2,
37-51, ISSN 1556-603X.

Khatib O. (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The
International Journal of Robotics Research, Vol. 5, No. 1, 90, ISSN 0278-3649.

Lerman K.; Martinoli A. & Galstyan A. (2005). A Review of Probabilistic Macroscopic Mod-
els for Swarm Robotic Systems. Lecture notes in computer science, Vol. 3342, 143-152,
Springer.

Li D. & Hu Y. (2003). Energy-Based Collaborative Source Localization Using Acoustic Mi-
crosensor Array. EURASIP Journal on Applied Signal Processing, 321-337, ISSN 1110-
8657.

Maalouf E.; Saad M.; Saliah H. & et al. (2006). Integration of A Novel Path Planning and
Control Technique in A Navigation Strategy. International Journal of Modelling, Identi-
fication and Control, Vol. 1, No. 1, 52-62, ISSN 1746-6172.

Marques L.; Nunes U. & de Almeida A. (2006). Particle Swarm-Based Olfactory Guided
Search. Autonomous Robots, Vol. 20, No. 3, 277-287, ISSN 0929-5593.

Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion and Path Planning 79

(a) Circular (b) Rectangle

(c) Allotype (d) Complicated

Fig. 13. Single Robot Move to the Potential Target with Path Planning

3 4 5 6 7 8 9 10
0

2000

4000

6000

D
is

ta
nc

e

Swarm Size
3 4 5 6 7 8 9 10

150

200

250

300

G
en

er
at

io
ns

Distance
Generations

Fig. 14. Relations between Average Distance/Generations and Swarm Size

to decide the best positions on the basis of space-time distribution properties of target and
robots. Simulation conducted in closed signal propagation environment indicates the approx-
imate relation between fusion and distance, i.e., the nearer the robot is far away from target,
the higher the fusion of signals. Also, a modified artificial potential field method is proposed
based on the multiple sensor structure for the space resource conflict resolution. The simu-
lation results show the validity of our sensor-based APF method in the process of search for
potential target.

7. References

Bahl P. & Padmanabhan V. (2000). RADAR: An In-Building RF-Based User Location and Track-
ing System. IEEE infocom, Vol. 2, 775-784, ISSN 0743-166X.

Borenstein J. & Koren Y. (1989). Real-Time Obstacle Avoidance for Fact Mobile Robots. IEEE
Transactions on Systems, Man and Cybernetics, Vol. 19, No. 5, 1179-1187, ISSN 1083-
4427.

Campion G.; Bastin G. & Dandrea-Novel B. (1996). Structural Properties and Classification
of Kinematic and Dynamicmodels of Wheeled Mobile Robots. IEEE transactions on
robotics and automation, Vol. 12, No. 1, 47-62, ISSN 1042-296X.

Doctor S.; Venayagamoorthy G. & Gudise V. (2004). Optimal PSO for Collective Robotic Search
Applications, Proceedings of Congress on Evolutionary Computation, pp. 1390-1395, Vol.
2, 2004.

Ge S. & Cui Y. (2000). New Potential Functions for Mobile Robot Path Planning. IEEE Transac-
tions on robotics and automation, Vol. 16, No. 5, 615-620, ISSN 1042-296X.

Hayes A. (2002). Self-Organized Robotic System Design and Autonomous Odor Localization, Ph.D.
thesis, California Institute of Technology, Pasadena, CA, USA.

Hereford J. & Siebold M. (2008). Multi-Robot Search Using A Physically-Embedded Particle
Swarm Optimization. International Journal of Computational Intelligence Research, Vol.
4, No. 2, 197-209, ISSN 0973-1873.

Janabi-Sharifi F. & Vinke D. (1993). Integration of the Artificial Potential Field Approach with
Simulated Annealing for Robot Path Planning. Proceedings of the IEEE International
Symposium on Intelligent Control, pp. 536-541, Chicago, USA.

Jatmiko W.; Sekiyama K. & Fukuda T. (2007). A PSO-Based Mobile Robot for Odor Source
Localization in Dynamic Advection-Diffusion with Obstacles Environment: Theory,
Simulation and Measurement. IEEE Computational Intelligence Magazine, Vol. 2, No. 2,
37-51, ISSN 1556-603X.

Khatib O. (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The
International Journal of Robotics Research, Vol. 5, No. 1, 90, ISSN 0278-3649.

Lerman K.; Martinoli A. & Galstyan A. (2005). A Review of Probabilistic Macroscopic Mod-
els for Swarm Robotic Systems. Lecture notes in computer science, Vol. 3342, 143-152,
Springer.

Li D. & Hu Y. (2003). Energy-Based Collaborative Source Localization Using Acoustic Mi-
crosensor Array. EURASIP Journal on Applied Signal Processing, 321-337, ISSN 1110-
8657.

Maalouf E.; Saad M.; Saliah H. & et al. (2006). Integration of A Novel Path Planning and
Control Technique in A Navigation Strategy. International Journal of Modelling, Identi-
fication and Control, Vol. 1, No. 1, 52-62, ISSN 1746-6172.

Marques L.; Nunes U. & de Almeida A. (2006). Particle Swarm-Based Olfactory Guided
Search. Autonomous Robots, Vol. 20, No. 3, 277-287, ISSN 0929-5593.

Swarm Robotics, From Biology to Robotics80

Martinoli A. & Easton K. (2002). Modeling Swarm Robotic Systems, Proceedings of Eighth Inter-
national Symposium on Experimental Robotics, pp. 297-306, July 2002, Springer.

Martinoli A.; Easton K. & Agassounon W. (2004). Modeling Swarm Robotic Systems: A Case
Study in Collaborative Distributed Manipulation. International Journal of Robotics Re-
search, Vol. 23, No. 4, 415-436, ISSN 0278-3649.

Murphy R. (2000). Introduction to AI Robotics, MIT Press, ISBN 0262133830, Cambridge, MA,
USA.

Ni L.; Liu Y.; Lau Y. & et al. (2004). LANDMARC: Indoor Location Sensing Using Active RFID.
Wireless Networks, Vol. 10, No. 6, 701-710, ISSN 1022-0038.

Oriolo G.; De Luca A.; Vendittelli M. & et al. (2002). WMR Control via Dynamic Feedback Lin-
earization: Design, Implementation, and Experimental Validation. IEEE Transactions
on Control Systems Technology, Vol. 10, No. 6, 835-852, ISSN 1063-6536.

Peng J. & Akella S. (2005). Coordinating Multiple Robots with Kinodynamic Constraints along
Specified Paths. The International Journal of Robotics Research, Vol. 24, No. 4, 295, ISSN
0278-3649.

Pugh J. & Martinoli A. (2006). Multi-Robot Learning with Particle Swarm Optimization, Pro-
ceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 441-448, ACM, New York, NY, USA.

Pugh J.; Segapelli L. & Martinoli A. (2006). Applying Aspects of Multi-Robot Search to Particle
Swarm Optimization. Lecture Notes in Computer Science, Vol. 4150, 506, Springer.

Pugh J.; Martinoli A. (2007). Inspiring and Modeling Multi-Robot Search with Particle Swarm
Optimization, Proceedings of the 4th IEEE Swarm Intelligence Symposium, pp. 1-5, Hon-
olulu, HI, USA.

Ren J. (2005). Applying Artificial Potential Fields to Path Planning for Mobile Robotics and to Hap-
tic Rendering for Minimally Invasive Surgery, Ph.D. thesis, The University of Western
Ontario, London, Ontario, Canada.

Siegwart R. & Nourbakhsh I. (2004). Introduction to Autonomous Mobile Robots, MIT Press, ISBN
026219502X, Cambridge, MA, USA.

Singh L.; Stephanou H. & Wen J. (1996). Real-Time Robot Motion Control with Circulatory
Fields, Proceedings of 1996 IEEE International Conference on Robotics and Automation,
Vol. 3.

Warren C. (1990). Multiple Robot Path Coordination Using Artificial Potential Fields, Proceed-
ings of 1990 IEEE International Conference on Robotics and Automation, pp. 500-505.

Xue, S. & Zeng, J. (2008). Control over Swarm Robots Search with Swarm Intelligence Princi-
ples. Journal of System Simulation, Vol. 20, No. 13, 3449-3454, ISSN 1004-731X.

Xue S.; Zeng J. & Zhang J. (2009). Parallel Asynchronous Control Strategy for Target Search
with Swarm Robots. International Journal of Bio-Inspired Computation, Vol. 1, No.
3, 151-163, ISSN 1758-0366.

Zou X. & Zhu J. (2003). Virtual Local Target Method for Avoiding Local Minimum in Potential
Field Based Robot Navigation. Journal of Zhejiang University SCIENCE A, Vol. 4, No.
3, 264-269, ISSN 1673-565X.

Optimization Design Method of IIR Digital Filters for Robot Force Position Sensors 81

Optimization Design Method of IIR Digital Filters for Robot Force Position
Sensors

Fuxiang Zhang

X

Optimization Design Method of IIR Digital Filters
for Robot Force Position Sensors

Fuxiang Zhang

Hebei University of Science and Technology
P. R. China

1. Introduction

Digital filtering plays an important role in sensors’ signal processing of robots. Not like
analog system, it is not limited by parameters of electronic components, so it can process
signals of rather low frequency, which is one of its advantages. According to different
structure, digital filters can be divided into finite impulse response (FIR) digital filters and
infinite impulse response (IIR) digital filters. The output of FIR digital filters only relates
with the previous and the present input. Whereas the output of IIR digital filters relates not
only with the input but also the previous output. It is to say that IIR digital filters have their
feedback. Seen from signal-processing, IIR digital filters have great advantages over FIR
digital filters, but they also have their disadvantages at design. The coefficient of IIR digital
filters is highly nonlinear, whereas the coefficient of FIR digital filters is linear.

2. Signal processing system of the robot joint force/position sensor

2.1 Configure of the signal processing system
There are two kinds of design methods for IIR digital filters: 1) Frequency translation
method, this method has two design routes: one route is first get analog lowpass filter,
analog highpass filter, analog bandpass filter and analog band elimination filter by doing
frequency band transform to the analog normalized prototype, and then get digital lowpass
filter, digital highpass filter, digital bandpass filter and digital band elimination filter by
digitization; the other route is first get digital lowpass filter by digitizing the analog
normalized prototype, and then get digital highpass filter, digital bandpass filter and digital
band elimination filter by frequency band transform in digital domain. 2) Optimization
algorithm, it is to design digital filters under certain optimization criterions to get the best
performance. Now, there are minimum P-error method, least mean square error (LMSE)
method, linear programming method and model-fitting frequency response method etc.
In recent years, some scholars have already applied such intelligent algorithms as genetic
algorithm, artificial immune algorithm and particle swarm optimization (PSO) algorithm etc
into the design of IIR digital filters and achieved better result. Commonly speaking, filters’
capacity is often shown by the permissible error of amplitude characteristic of its frequency
response. When designing a filter, we should consider such main technical index as

5

Swarm Robotics, From Biology to Robotics82

passband cutoff frequency c , stopband cutoff frequency c , passband tolerancea1,

stopband tolerance a2 and passband maximum ripple 1 , stopband minimum attenuation

2 ,etc. At present, both traditional and optimized design methods need to consider the
above mentioned capability index. The author will put forward an optimized design
method based on the prior knowledge. According to the method, people only need to know
the structure of a filter and to master an intelligent optimization algorithm before finishing
the filter’s design.
For the signal frequency of the robot joint force/position sensors is rather low, their signal
fits to be processed by lowpass filters. There are two kinds of filters: analog filters and
digital filters. Here, both analog filters and digital filters are used to process the signals of
the robot joint force/position sensors. The configuration of the filters sees Fig. 1.

 îV t  îV t  iV n  oV n

Fig. 1. Configuration of the filters

The output signals of the robot joint force/position sensor are analog input signals  îV t

of the signal processing system. After analog filtering  îV t were converted to  îV t , and

then  îV t were sampled and discretized into input sequence  iV n by A/D converter.

2.2 Realization of the signal processing system
(a) Realization of the analog filter
In this research, the sensor signal is magnified by instrument magnifier AD623, and the filter
method by double capacitors is adopted which recommended by AD623 user's manual. The
schematic of the analog filter is shown in Fig.2.

Fig. 2. Schematic of the analog filter

(b) Realization of the digital filter
Generally, the system function of N-order digital filter is

 
1 2

0 1 2
1 2

1 21

  

  

    


   

M
M

N
N

b b z b z b zH z
a z a z a z

 (1)

Translating it to difference equation

         0 1 21 2 My n b x n b x n b x n a x n M       

     1 21 2 Na y n a y n a y n N       (2)
Then the digital filter can be realized via Eq. (2).

3. Optimization model of the IIR digital filter of robot joint force/position
sensor

The system of IIR digital filter can be shown as Fig. 3

Fig. 3. Schematic diagram of the IIR digital filter
Suppose that the system function of N-order IIR digital filter is

 
1 2

0 1 2
1 2

1 21

  

  

    


   

M
M

N
N

b b z b z b zH z
a z a z a z

 (3)

If Eq. (3) is adopted to design IIR digital filter, the number of parameter required optimize is
1M N  , and it is difficult to choose the value range of every parameter. Generally, the

system function of IIR digital filter is expressed as

 
1 2

1 2
1

1
1

 

 


 


 
N

k k

k k k

a z b zH z A
c z d z

 (4)

Both Butterworth filter and Chebyshev filter can be denoted as the cascade structural form
with second-order unit shown as Eq. (4). When IIR digital filter is denoted by this structural
form, the sensitivity of its frequency response to coefficient change is lower. And it is
convenient to confirm the value range of every parameter with this structure form.
For robot force/position sensors, its measurement signal is low frequency, generally below
10Hz. And the disturbance is white noise mostly. If power supply is mains supply, the
disturbance of 50Hz power frequency would exist. Generally, the analog lowpass filter is
used to deal with these kinds of signals. However, it is very difficult to filtering the
disturbance of 50Hz power frequency and the low-frequency white noise. If the digital filter
is adopted and its cutoff frequency is set rather low, the filter can remove the disturbance of
50Hz power frequency and white noise mostly. From practical experience, it was known
that the satisfying effect can be obtained when adopting a second-order lowpass.
The system function of the second-order Butterworth filter can be simplified as

Optimization Design Method of IIR Digital Filters for Robot Force Position Sensors 83

passband cutoff frequency c , stopband cutoff frequency c , passband tolerancea1,

stopband tolerance a2 and passband maximum ripple 1 , stopband minimum attenuation

2 ,etc. At present, both traditional and optimized design methods need to consider the
above mentioned capability index. The author will put forward an optimized design
method based on the prior knowledge. According to the method, people only need to know
the structure of a filter and to master an intelligent optimization algorithm before finishing
the filter’s design.
For the signal frequency of the robot joint force/position sensors is rather low, their signal
fits to be processed by lowpass filters. There are two kinds of filters: analog filters and
digital filters. Here, both analog filters and digital filters are used to process the signals of
the robot joint force/position sensors. The configuration of the filters sees Fig. 1.

 îV t  îV t  iV n  oV n

Fig. 1. Configuration of the filters

The output signals of the robot joint force/position sensor are analog input signals  îV t

of the signal processing system. After analog filtering  îV t were converted to  îV t , and

then  îV t were sampled and discretized into input sequence  iV n by A/D converter.

2.2 Realization of the signal processing system
(a) Realization of the analog filter
In this research, the sensor signal is magnified by instrument magnifier AD623, and the filter
method by double capacitors is adopted which recommended by AD623 user's manual. The
schematic of the analog filter is shown in Fig.2.

Fig. 2. Schematic of the analog filter

(b) Realization of the digital filter
Generally, the system function of N-order digital filter is

 
1 2

0 1 2
1 2

1 21

  

  

    


   

M
M

N
N

b b z b z b zH z
a z a z a z

 (1)

Translating it to difference equation

         0 1 21 2 My n b x n b x n b x n a x n M       

     1 21 2 Na y n a y n a y n N       (2)
Then the digital filter can be realized via Eq. (2).

3. Optimization model of the IIR digital filter of robot joint force/position
sensor

The system of IIR digital filter can be shown as Fig. 3

Fig. 3. Schematic diagram of the IIR digital filter
Suppose that the system function of N-order IIR digital filter is

 
1 2

0 1 2
1 2

1 21

  

  

    


   

M
M

N
N

b b z b z b zH z
a z a z a z

 (3)

If Eq. (3) is adopted to design IIR digital filter, the number of parameter required optimize is
1M N  , and it is difficult to choose the value range of every parameter. Generally, the

system function of IIR digital filter is expressed as

 
1 2

1 2
1

1
1

 

 


 


 
N

k k

k k k

a z b zH z A
c z d z

 (4)

Both Butterworth filter and Chebyshev filter can be denoted as the cascade structural form
with second-order unit shown as Eq. (4). When IIR digital filter is denoted by this structural
form, the sensitivity of its frequency response to coefficient change is lower. And it is
convenient to confirm the value range of every parameter with this structure form.
For robot force/position sensors, its measurement signal is low frequency, generally below
10Hz. And the disturbance is white noise mostly. If power supply is mains supply, the
disturbance of 50Hz power frequency would exist. Generally, the analog lowpass filter is
used to deal with these kinds of signals. However, it is very difficult to filtering the
disturbance of 50Hz power frequency and the low-frequency white noise. If the digital filter
is adopted and its cutoff frequency is set rather low, the filter can remove the disturbance of
50Hz power frequency and white noise mostly. From practical experience, it was known
that the satisfying effect can be obtained when adopting a second-order lowpass.
The system function of the second-order Butterworth filter can be simplified as

Swarm Robotics, From Biology to Robotics84

 
1 2

1 2

1 2
1

 

 

 


 
z zH z A

cz dz
 (5)

IIR digital filter as a system, the ideal signal after filtered could repeat the input signal
perfectly, and with definite system delay. Then the similarity of the actual and ideal output
signal would be considered as the evaluation index of filter performance. If the maximum
frequency of robot force/position sensor signal is f, and the input signal is simulated with
sine function, the function of input signal can be denoted as

       s s dis s wsin 2π sin 2π 50 randn 1x n c f n T c n T c           (6)

where cs is the coefficient of sensor signal, cdis is the coefficient of disturbance of 50Hz power
frequency, cw is the coefficient of white noise, Ts is the sample time of system. randn() is the
normal distribution random number which represents white noise.
The ideal output after digital filter is

   d s ssin 2πy n c f n T    (7)
The actual output of filter is

           2 1 2 1 2             y n A x n A x n A x n c y n d y n (8)

Suppose that the delay time is T, the sample size is n, the mean square error (MSE) of IIR
digital filter at every sample points can be shown as

    2
d

1

1
1

n T

i
E y T i y i

n T





  
   (9)

The mathematical model of optimization design of IIR digital filter is

 
  

min

. . 0 1, ,j

E f X

s t X S X g X j m

 


    
 (10)

where X is optimization variable,  , ,X A c d , ()ig X is restriction function, S

restriction region, E optimization aim function, ()E f X .

4. Optimize the parameters of the IIR digital filter using the particle swarm
optimization algorithm

4.1 Introduction of particle swarm optimization
Particle Swarm Optimization (PSO) algorithm is a new global optimization evolutionary
algorithm invented by Doctor Eberhart and Doctor Kennedy. This algorithm simulates

preying of bird. It is outstanding to solve nonlinear optimization problem, and it is simply to
realize this algorithm. So it has become an important optimization tool.
In PSO algorithm, the position of particle represents the possible solution. The superiority-
inferiority of particle is measured by particle fitness. Firstly, a flock of random particles are
initialized. Then the optimal solution is found out via multiple iterating. During every
iteration, particle is updated by tracking the two optimal solutions which one optimal
solution is found by this particle, namely, individual optimal solution, the other is found by
the whole particle swarm presently, namely, global optimal solution.
After found two above-mentioned extremums, particle’s velocity and position are updated
according to two equations as follow.

   1
1 1 2 2

k k k k k k
i i i i g iw c r c r          V V p x p x (11)

1 1k k k
i i i
  x x V (12)

where k is generation number, i is serial number of the particle, V is velocity of the particle, x
is current position of particle, p is vector form of pBest, g is vector form of gBest, r1 and r2 are
random numbers from 0 to 1, c1 and c2 are learning factors, generally, c1=c2=2, w is weighting
factor, its value from 0.1 to 0.9.

4.2 Improved algorithm
(a) During the basic PSO algorithm search in solution space, the particle would oscillate
round global optimal solution at later period. To solve this problem, the improvement can
be done as follows: with iteration going, to let velocity update the weighting factor, the
weighting factor decreases from maximum wmax to minimum wmin linearly, namely

max min
max

max

w ww w G
G


   (13)

where G is generation number of current iteration, Gmax is total generation number of
iteration.
(b) To make the PSO algorithm search in solution space and to ensure convergence rate, the
position space and velocity space of particle need to be limited. Eq. (5) will to be

 r 1min 1max 2min 2max 3min 3max, , , , ,x x x x x x x (14)

 r 1min 1max 2min 2max 3min 3max, , , , ,v v v v v v v (15)

4.3 Parameters coding and the choice of the fitness function
To solve X using PSO algorithm, the optimization variable X should be coded, to become
particle of PSO algorithm. According to characteristics of PSO algorithm, parameters can be
denoted with real number. To every particle of filter shown in Eq. (5), if the current position

of particle is denoted with  , , A c dX , and the velocity is denoted with

 1 2 3, , V V VV , then the coding structure would be adopted as follows:

Optimization Design Method of IIR Digital Filters for Robot Force Position Sensors 85

 
1 2

1 2

1 2
1

 

 

 


 
z zH z A

cz dz
 (5)

IIR digital filter as a system, the ideal signal after filtered could repeat the input signal
perfectly, and with definite system delay. Then the similarity of the actual and ideal output
signal would be considered as the evaluation index of filter performance. If the maximum
frequency of robot force/position sensor signal is f, and the input signal is simulated with
sine function, the function of input signal can be denoted as

       s s dis s wsin 2π sin 2π 50 randn 1x n c f n T c n T c           (6)

where cs is the coefficient of sensor signal, cdis is the coefficient of disturbance of 50Hz power
frequency, cw is the coefficient of white noise, Ts is the sample time of system. randn() is the
normal distribution random number which represents white noise.
The ideal output after digital filter is

   d s ssin 2πy n c f n T    (7)
The actual output of filter is

           2 1 2 1 2             y n A x n A x n A x n c y n d y n (8)

Suppose that the delay time is T, the sample size is n, the mean square error (MSE) of IIR
digital filter at every sample points can be shown as

    2
d

1

1
1

n T

i
E y T i y i

n T





  
   (9)

The mathematical model of optimization design of IIR digital filter is

 
  

min

. . 0 1, ,j

E f X

s t X S X g X j m

 


    
 (10)

where X is optimization variable,  , ,X A c d , ()ig X is restriction function, S

restriction region, E optimization aim function, ()E f X .

4. Optimize the parameters of the IIR digital filter using the particle swarm
optimization algorithm

4.1 Introduction of particle swarm optimization
Particle Swarm Optimization (PSO) algorithm is a new global optimization evolutionary
algorithm invented by Doctor Eberhart and Doctor Kennedy. This algorithm simulates

preying of bird. It is outstanding to solve nonlinear optimization problem, and it is simply to
realize this algorithm. So it has become an important optimization tool.
In PSO algorithm, the position of particle represents the possible solution. The superiority-
inferiority of particle is measured by particle fitness. Firstly, a flock of random particles are
initialized. Then the optimal solution is found out via multiple iterating. During every
iteration, particle is updated by tracking the two optimal solutions which one optimal
solution is found by this particle, namely, individual optimal solution, the other is found by
the whole particle swarm presently, namely, global optimal solution.
After found two above-mentioned extremums, particle’s velocity and position are updated
according to two equations as follow.

   1
1 1 2 2

k k k k k k
i i i i g iw c r c r          V V p x p x (11)

1 1k k k
i i i
  x x V (12)

where k is generation number, i is serial number of the particle, V is velocity of the particle, x
is current position of particle, p is vector form of pBest, g is vector form of gBest, r1 and r2 are
random numbers from 0 to 1, c1 and c2 are learning factors, generally, c1=c2=2, w is weighting
factor, its value from 0.1 to 0.9.

4.2 Improved algorithm
(a) During the basic PSO algorithm search in solution space, the particle would oscillate
round global optimal solution at later period. To solve this problem, the improvement can
be done as follows: with iteration going, to let velocity update the weighting factor, the
weighting factor decreases from maximum wmax to minimum wmin linearly, namely

max min
max

max

w ww w G
G


   (13)

where G is generation number of current iteration, Gmax is total generation number of
iteration.
(b) To make the PSO algorithm search in solution space and to ensure convergence rate, the
position space and velocity space of particle need to be limited. Eq. (5) will to be

 r 1min 1max 2min 2max 3min 3max, , , , ,x x x x x x x (14)

 r 1min 1max 2min 2max 3min 3max, , , , ,v v v v v v v (15)

4.3 Parameters coding and the choice of the fitness function
To solve X using PSO algorithm, the optimization variable X should be coded, to become
particle of PSO algorithm. According to characteristics of PSO algorithm, parameters can be
denoted with real number. To every particle of filter shown in Eq. (5), if the current position

of particle is denoted with  , , A c dX , and the velocity is denoted with

 1 2 3, , V V VV , then the coding structure would be adopted as follows:

Swarm Robotics, From Biology to Robotics86

A, c, d V1, V2, V3

 Position of the particles Velocity of the particles
PSO algorithm confirms the superiority-inferiority of particle’s current position via fitness.
So the fitness function must be chosen according to the practical demand. Here Eq. (9) is
chosen as the fitness function of IIR digital filter design. Evidently, the less the value of E is,
the less the mean square error of filter parameter X corresponding this particle is. Then this
particle is corresponding to the better coefficient of filter. When the algorithm finished, the
particle with the minimum fitness during the whole running period is the optimal solution
obtained by this algorithm, namely, filter parameter.

4.4 Optimization steps
(a) Set parameters of PSO algorithm, including population size Spop, dimension Sdim,
weighting factor w, position space xr, velocity space vr.
(b) Set parameters of IIR digital filter, such as cs, cdis, cw, Ts, etc.
(c) Initialize the particle swarm, to randomly initialize every particle’s position and velocity
in parameter space.
(d) Solve the system delay time, and to calculate the particle’s fitness according to Eq. (9).
(e) Initialize the current particle’s position as individual extremum pBest, and the position of
particle with minimum fitness among all individual extremum as gBest.
(f) Update the particle’s position and velocity according to Eq. (14) and Eq. (15).
(g) Solve the system delay time, and to calculate the particle’s fitness again.
(h) Judge whether to update the particle’s individual extremum pBest and the global
extremum gBest of particle swarm.
(i) Repeat step (f) to (h), till meeting precision demand or reaching iteration times pre-set.
(j) Output gBest, and to obtain the coefficient of IIR digital filter.

5. Results and analysis

To prove the validity of optimization design method of IIR digital filter for robot
force/position sensor presented in this paper, an optimization program was completed in
the Matlab 6.5 circumstance and several simulation experiments were made. In these
simulation experiments, Parameters of the PSO algorithm were set as: swarm size Spop = 50,
parameter dimension Sdim = 3, minimum weighting factor wmin = 0.1, maximum weighting
factor wmax = 0.9. According to former design experience, the value range of every filter
coefficient are as: xr = [0.00001, 0.01, 1, 2, 0.00001, 1], maximum velocity vr = [-0.005, 0.005, -
0.5, 0.5, -0.5, 0.5], sample time Ts = 0.02 s, maximum frequency of sensor signal f = 0.05 Hz,
signal amplitude cs = 1.5, disturbance amplitude of 50 Hz power frequency cdis = 0.1,
amplitude coefficient of white noise cw = 0.15, simulation time t = 50 s.
Fig. 4 is the variety course of every generation’s fitness of PSO algorithm.

Fig. 4. Curves of unfiltered and filtered signals of the robot force/position sensors

Fig. 5 a) and b) are the signal curve of robot force/position sensor before and after filtering
respectively. The last parameters of IIR digital filter are set as A = 0.0064, c = 1.5186, d =
0.5439, delay time T = 0.36 s, MSE E = 0.0091. From Fig. 4 b), we can know that the filter
effect is perfect for sensor signal of f = 0.05 Hz.

(a) (b)

Fig. 5. Curves of unfiltered and filtered signals of the robot force/position sensors, (a) is
curve of unfiltered signals, (b) is curve of filtered signals.

The frequency response optimized is

   
 

s

20.02 0.02

20.02 0.02

1 2e e
e 0.0064

1 1.5186e 0.5439 e

j j
T j

j j
H

 


 

 

 

 
 

 
 (1

6)

From Eq. (16), the amplitude-frequency characteristics curve of filter designed in this
research can be obtained, as shown in Fig. 6.

Fig. 6. Magnitude-frequency characteristics curve of the filter

Optimization Design Method of IIR Digital Filters for Robot Force Position Sensors 87

A, c, d V1, V2, V3

 Position of the particles Velocity of the particles
PSO algorithm confirms the superiority-inferiority of particle’s current position via fitness.
So the fitness function must be chosen according to the practical demand. Here Eq. (9) is
chosen as the fitness function of IIR digital filter design. Evidently, the less the value of E is,
the less the mean square error of filter parameter X corresponding this particle is. Then this
particle is corresponding to the better coefficient of filter. When the algorithm finished, the
particle with the minimum fitness during the whole running period is the optimal solution
obtained by this algorithm, namely, filter parameter.

4.4 Optimization steps
(a) Set parameters of PSO algorithm, including population size Spop, dimension Sdim,
weighting factor w, position space xr, velocity space vr.
(b) Set parameters of IIR digital filter, such as cs, cdis, cw, Ts, etc.
(c) Initialize the particle swarm, to randomly initialize every particle’s position and velocity
in parameter space.
(d) Solve the system delay time, and to calculate the particle’s fitness according to Eq. (9).
(e) Initialize the current particle’s position as individual extremum pBest, and the position of
particle with minimum fitness among all individual extremum as gBest.
(f) Update the particle’s position and velocity according to Eq. (14) and Eq. (15).
(g) Solve the system delay time, and to calculate the particle’s fitness again.
(h) Judge whether to update the particle’s individual extremum pBest and the global
extremum gBest of particle swarm.
(i) Repeat step (f) to (h), till meeting precision demand or reaching iteration times pre-set.
(j) Output gBest, and to obtain the coefficient of IIR digital filter.

5. Results and analysis

To prove the validity of optimization design method of IIR digital filter for robot
force/position sensor presented in this paper, an optimization program was completed in
the Matlab 6.5 circumstance and several simulation experiments were made. In these
simulation experiments, Parameters of the PSO algorithm were set as: swarm size Spop = 50,
parameter dimension Sdim = 3, minimum weighting factor wmin = 0.1, maximum weighting
factor wmax = 0.9. According to former design experience, the value range of every filter
coefficient are as: xr = [0.00001, 0.01, 1, 2, 0.00001, 1], maximum velocity vr = [-0.005, 0.005, -
0.5, 0.5, -0.5, 0.5], sample time Ts = 0.02 s, maximum frequency of sensor signal f = 0.05 Hz,
signal amplitude cs = 1.5, disturbance amplitude of 50 Hz power frequency cdis = 0.1,
amplitude coefficient of white noise cw = 0.15, simulation time t = 50 s.
Fig. 4 is the variety course of every generation’s fitness of PSO algorithm.

Fig. 4. Curves of unfiltered and filtered signals of the robot force/position sensors

Fig. 5 a) and b) are the signal curve of robot force/position sensor before and after filtering
respectively. The last parameters of IIR digital filter are set as A = 0.0064, c = 1.5186, d =
0.5439, delay time T = 0.36 s, MSE E = 0.0091. From Fig. 4 b), we can know that the filter
effect is perfect for sensor signal of f = 0.05 Hz.

(a) (b)

Fig. 5. Curves of unfiltered and filtered signals of the robot force/position sensors, (a) is
curve of unfiltered signals, (b) is curve of filtered signals.

The frequency response optimized is

   
 

s

20.02 0.02

20.02 0.02

1 2e e
e 0.0064

1 1.5186e 0.5439 e

j j
T j

j j
H

 


 

 

 

 
 

 
 (1

6)

From Eq. (16), the amplitude-frequency characteristics curve of filter designed in this
research can be obtained, as shown in Fig. 6.

Fig. 6. Magnitude-frequency characteristics curve of the filter

Swarm Robotics, From Biology to Robotics88

From Fig. 6, it can be seen that signal is attenuated under 0.1, when its frequency decreased
to 5 Hz. So the filter can remove the disturbance of 50 Hz power frequency and white noise
mostly.

6. Conclusion

Aimed at the design of IIR digital filters of robot force/position sensors, a design method is
put forward. Its optimization principle is the minimum MSE between ideal and actual
output signal at time-domain. And the mathematics model aiming at second-order
Butterworth lowpass filter was set up. This method needn’t understand the complicated
design theory and method for digital filter and the characteristic of filter, such as passband
frequency, cutoff frequency, passband attenuation, ripple, etc. This method only requires the
understanding of the structure characteristic of filter and the maximum frequency of sensor
signal. Thus the parameters of the filter can be optimized in a suitable intelligent
optimization method. An optimization program of the PSO algorithm was developed in the
Matlab circumstance. The result of simulation experiment proves the validity of this
method, and to be strongly practicable.

7. References

Cheng, P. Q. (2007). Digital Signal Processing Tutorial 3rd edition, Tsinghua University Press,
ISBN 9787302139973, Beijing, P. R. China

Chen, J. & Xu, L. H. (2006). Road-Junction Traffic Signal Riming Optimization by an
Adaptive Particle Swarm Algorithm, Proceedings of the 9th International Conference on
Control, Automation, Robotics and Vision (ICARCV’06), pp. 1-7, ISBN 1424403421,
Singapore, Dec. 2006

Chen, W. S. & Zhao, J. (1999). Computer Control of Mechatronic System, Harbin Institute of
Technology Press, ISBN 9787560313979, Harbin, P. R. China

Hou, Z. R. & Lv, Z. S. (2003). Particle Swarm Optimization Algorithm for IIR Digital Filters
Design. Journal of Circuits and Systems, Vol.8, No.4 , (Apr. 2003) 16-20, ISSN 007-0249

Kalinlia, A. & Karaboga, N. (2005). Artificial Immune Algorithm for IIR Filter Design.
International Journal of Artificial Intelligence, Vol.18, No.8 , (Aug. 2005) 919-929, ISSN
0974-0635

Karaboga, N., Kalinli, A. & Karaboga, D. (2004). Designing digital IIR filters using ant
colonyoptimisation algorithm. Engineering Applications of Artificial Intelligence,
Vol.17, No.6 , (Jun. 2004) 301-309, ISSN 0952-1976

Li, X.; Zhao, R. C. & Wang, Q. (2003). Optimizing the Design of IIR Filter via Genetic
Algorithm, Proceedings of IEEE International Conference on Neural Networks for Signal
Processing, pp. 476-479, ISBN 0-7803-8177-7, Nanjing, China, Sep. 2003

Seo, J. -H., Im, C. -H, Heo, C. –G., Kim, J. –K., Jung, H. –K. & Lee, C. –G. (2006). Multimodal
Function Optimization Based on Particle Swarm Optimization. IEEE Transactions on
Magnetics, Vol.42, No.4, (Apr. 2006) 1095-1098, ISSN 0018-9464

Shi, Y. & Eberhart, R. C. (1998). A Modified Swarm Optimizer, Proceedings of the IEEE
International Conference of Evolutionary Computation, pp. 69-73, Anchorage, USA,
May. 1998

Tang, K. S., Man, K. F., Kwong, S. & Liu, Z. F. (1998). Design and Optimization of IIR Filter
Structure Using Hierarchical Genetic Algorithms. IEEE Transactions on Industrial
Electronics, Vol.45, No.3, (Mar. 1998) 481-487, ISSN 0278-0046

Ting, T. O., Rao, M. V. C., Loo, C. K. & Ngu, S. S. (2003). Solving Unit Commitment Problem
Using Hybrid Particle Swarm Optimization. Journal of Heuristics, Vol.9, No.6, (Jun
2003) 507-520, ISSN 1381-1231

Wu, B., Wang, W. L., Zhao, Y. W., Xu, X. L. & Yang, F. Y. (2006). A Novel Real Number
Encoding Mechod of Particle Swarm Optimitation for Vehicle Routing Problem,
Proceedings of the 6th Congress on Intelligent Control and Automation, pp. 3271-3275,
ISBN 7810778021, Wuxi, P. R. China, Jul. 2006

Zeng, J. C., Jie, J. & Cui, Z. H. (2004). Particle Swarm Optimization, Science Press, ISBN
7030132548, Beijing, P. R. China

Optimization Design Method of IIR Digital Filters for Robot Force Position Sensors 89

From Fig. 6, it can be seen that signal is attenuated under 0.1, when its frequency decreased
to 5 Hz. So the filter can remove the disturbance of 50 Hz power frequency and white noise
mostly.

6. Conclusion

Aimed at the design of IIR digital filters of robot force/position sensors, a design method is
put forward. Its optimization principle is the minimum MSE between ideal and actual
output signal at time-domain. And the mathematics model aiming at second-order
Butterworth lowpass filter was set up. This method needn’t understand the complicated
design theory and method for digital filter and the characteristic of filter, such as passband
frequency, cutoff frequency, passband attenuation, ripple, etc. This method only requires the
understanding of the structure characteristic of filter and the maximum frequency of sensor
signal. Thus the parameters of the filter can be optimized in a suitable intelligent
optimization method. An optimization program of the PSO algorithm was developed in the
Matlab circumstance. The result of simulation experiment proves the validity of this
method, and to be strongly practicable.

7. References

Cheng, P. Q. (2007). Digital Signal Processing Tutorial 3rd edition, Tsinghua University Press,
ISBN 9787302139973, Beijing, P. R. China

Chen, J. & Xu, L. H. (2006). Road-Junction Traffic Signal Riming Optimization by an
Adaptive Particle Swarm Algorithm, Proceedings of the 9th International Conference on
Control, Automation, Robotics and Vision (ICARCV’06), pp. 1-7, ISBN 1424403421,
Singapore, Dec. 2006

Chen, W. S. & Zhao, J. (1999). Computer Control of Mechatronic System, Harbin Institute of
Technology Press, ISBN 9787560313979, Harbin, P. R. China

Hou, Z. R. & Lv, Z. S. (2003). Particle Swarm Optimization Algorithm for IIR Digital Filters
Design. Journal of Circuits and Systems, Vol.8, No.4 , (Apr. 2003) 16-20, ISSN 007-0249

Kalinlia, A. & Karaboga, N. (2005). Artificial Immune Algorithm for IIR Filter Design.
International Journal of Artificial Intelligence, Vol.18, No.8 , (Aug. 2005) 919-929, ISSN
0974-0635

Karaboga, N., Kalinli, A. & Karaboga, D. (2004). Designing digital IIR filters using ant
colonyoptimisation algorithm. Engineering Applications of Artificial Intelligence,
Vol.17, No.6 , (Jun. 2004) 301-309, ISSN 0952-1976

Li, X.; Zhao, R. C. & Wang, Q. (2003). Optimizing the Design of IIR Filter via Genetic
Algorithm, Proceedings of IEEE International Conference on Neural Networks for Signal
Processing, pp. 476-479, ISBN 0-7803-8177-7, Nanjing, China, Sep. 2003

Seo, J. -H., Im, C. -H, Heo, C. –G., Kim, J. –K., Jung, H. –K. & Lee, C. –G. (2006). Multimodal
Function Optimization Based on Particle Swarm Optimization. IEEE Transactions on
Magnetics, Vol.42, No.4, (Apr. 2006) 1095-1098, ISSN 0018-9464

Shi, Y. & Eberhart, R. C. (1998). A Modified Swarm Optimizer, Proceedings of the IEEE
International Conference of Evolutionary Computation, pp. 69-73, Anchorage, USA,
May. 1998

Tang, K. S., Man, K. F., Kwong, S. & Liu, Z. F. (1998). Design and Optimization of IIR Filter
Structure Using Hierarchical Genetic Algorithms. IEEE Transactions on Industrial
Electronics, Vol.45, No.3, (Mar. 1998) 481-487, ISSN 0278-0046

Ting, T. O., Rao, M. V. C., Loo, C. K. & Ngu, S. S. (2003). Solving Unit Commitment Problem
Using Hybrid Particle Swarm Optimization. Journal of Heuristics, Vol.9, No.6, (Jun
2003) 507-520, ISSN 1381-1231

Wu, B., Wang, W. L., Zhao, Y. W., Xu, X. L. & Yang, F. Y. (2006). A Novel Real Number
Encoding Mechod of Particle Swarm Optimitation for Vehicle Routing Problem,
Proceedings of the 6th Congress on Intelligent Control and Automation, pp. 3271-3275,
ISBN 7810778021, Wuxi, P. R. China, Jul. 2006

Zeng, J. C., Jie, J. & Cui, Z. H. (2004). Particle Swarm Optimization, Science Press, ISBN
7030132548, Beijing, P. R. China

Swarm Robotics, From Biology to Robotics90

Visual Analysis of Robot and Animal Colonies 91

Visual Analysis of Robot and Animal Colonies

E. Martínez and A.P. del Pobil

X

Visual Analysis of Robot and Animal Colonies

E. Martínez and A.P. del Pobil
Robotic Intelligence Lab, Jaume-I University Castellón, Spain

Interaction Science Dept., Sungkyunkwan University, Seoul, S. Korea

1. Introduction

Micro-robotics calls for the development of tracking systems in order to study the
movement of each micro-robot in a colony to answer questions about what they are doing
and where and when they act (see Fig. 1). Moreover, micro-robots can be used to emulate
social insect behaviour (Camazine et al., 2001) and study them through tracking experiments
involving several miniature robots on a desktop table. Thus, principles of self-organization
in these colonies, which were studied so far by analysis of a tremendous amount of insect
trajectories and manual event counting, are now better understood by biologists thanks to
robotics research.

Fig. 1. Analogy between social insects (left) and a micro-robot colony (right)

Although this approach is only recently increasing its popularity, computer vision systems
for tracking moving targets are widely used in many applications such as smart
surveillance, virtual reality, advanced user interfaces, motion analysis and model-based
image coding (Gavrila, 1999). Surveillance systems seek to automatically identify people,
objects or events of interest in different kind of environments (Russ, 1998; Toyama et al.
1999; Haritaoglu et al., 2000; Radke et al., 2005). However, this problem is not easy to solve.
First of all, it is not viable to tag each colony member under study. On the one hand, the tag
selection process can be difficult since tags must be very small in some cases and, therefore,
it might not be possible to detect them in an image. Furthermore, tags can become
ambiguous when a swarm is composed of many individuals. On the other hand, tagging can
alter individual behaviour. So, an application for tracking unmarked object has been
developed. A new problem arises: how to identify the same object in two consecutive frames.
SwisTrack (Correll et al., 2006) is a previous work following this approach which we try to
improve. It is a platform-independent, easy-to-use and robust tracking software developed
to study robot swarms and behavioural biology. It is part of the European project LEURRE
(http://leurre.ulb.ac.be.2006) focused on building and controlling mixed societies composed

6

Swarm Robotics, From Biology to Robotics92

of animals and artificial embedded agents. In preliminary case studies towards this aim
(Caprari et al., 2005), an Insbot team has been introduced into a swarm of cockroaches and
allowed for modification of the natural behaviour of the swarm. We will show that our
application achieves robust performance in object identification and tracking without the
need of a strong intervention by the user.
As the structure of the designed method (see Fig. 2), this paper is organized as follows: the
visual segmentation and detection of objects are described in Sec. 2 and 3. In Sec. 4 we
outline the tracking problem and its solution. Experimental results are given in Sec. 5 and
discussed in Sec. 6.

Fig. 2. Flowchart of the whole designed method

2. Object Segmentation

A common element of any surveillance systems is a module that is capable of identifying the
set of pixels which represents all the individuals under study in each captured image. There
are several techniques to carry out this task. For example, the background modeling
approach (Toyama et al., 1999; Haritaoglu et al., 2000) allows to model dynamic factors such
as blinking of screens, shadows, mirror images on the glass windows or small variations in
illumination due to flickering of light sources. Pixels are classified as background or
foreground depending on the fitting of their values with the built model. As a drawback,
this method is not capable of adapting to sudden illumination changes, and we ruled it out
with the aim of developing a more robust surveillance application in the presence of
variation of lighting conditions. On the other hand, most of the alternative techniques are
developed by gray-level image processing so that if available images are in color, it is
necessary to convert them to gray-level. As our system has color images as input, the binary
image resulting from the segmentation process can be obtained from a combination of three

binary images (each color channel generates a gray-level image which is segmented by the
selected method obtaining a different binary image), or from a gray-level image obtained
directly from the color one.
Thus, the first step is to convert the captured color image to a gray-level one. For such
preprocessing, the Hue-Saturation-Intensity (HSI) system is used since it encodes color
information by separating an overall intensity value I from two values encoding chromaticity
- hue H and saturation S. HSI might also provide better support for computer vision
algorithms because it is amenable to normalization for lighting and focus on the two
chromaticy parameters that are more associated with the intrinsic character of a surface
rather than the lightning source. Thus, the resulting gray-level image is only built from the
intensity value. Derivation of HSI coordinates from RGB coordinates is a common process in
computer vision (Shapiro and Stockman, 2001).
Once the gray-scale image is available, a segmentation process has to be applied on it.
Although frame difference is the easiest and fastest method to detect moving objects in an
image, it fails when the objects are steady. This problem could be solved by taking a
reference image with no objects and subtracting it from the new ones. Nevertheless, a little
illumination change might make the whole process fail, thus, an alternative algorithm
should be chosen. In our case, the corresponding binary image is obtained from an input
gray-scale by thresholding operations as in Swistrack. This technique defines a range of
brightness values in the original image: pixel value greater than a threshold (or lower,
depending on its definition) belongs to the foreground and the rest of pixels are classified as
background. The drawback of this method is the correct determination of the threshold. In
Swistrack two different kinds of reference images are used, depending on the mode in which
the system is operating:
 Static background: the background image is captured at the beginning of the

experiment and is not updated at any time;
 Running average: the reference image is built as the running average of all video frames

processed until that moment
The threshold is fixed in both cases and represents the minimum difference required to
classify a pixel as foreground. It is important to note that the fixed threshold is sensitive to
changes in lighting conditions, especially in the first operation mode in which the reference
image is not updated during all the experiment. Although the running average is more
capable of dealing with illumination changes, it might consider objects that stop moving for
a long period of time as part of the background, without detecting their presence in the
scene. We have implemented a method for automatically calculating the threshold based on
histogram properties by updating its value in each frame, in order to adapt it to variations of
the lighting conditions. This provides an advantage over the Swistrack method, as significant
intensity differences between the objects to be tracked and the background are not
necessary.
After the threshold setting, two consecutive morphological operations are applied on the
binary image resulting from the segmentation process. These steps are required to erase
isolated points or lines caused by different dynamic factors such as, for example, changes
induced by camera motion, sensor noise, non-uniform attenuation, blinking of lights or
atmospheric absorption. A 3x3 erode filter is used to delete these artefacts and then a 3x3
expand filter is applied to recover the foreground region. A result of the whole process can
be observed in Figure 3, where a group of micro-robots is seen from above. As it can be seen,

Visual Analysis of Robot and Animal Colonies 93

of animals and artificial embedded agents. In preliminary case studies towards this aim
(Caprari et al., 2005), an Insbot team has been introduced into a swarm of cockroaches and
allowed for modification of the natural behaviour of the swarm. We will show that our
application achieves robust performance in object identification and tracking without the
need of a strong intervention by the user.
As the structure of the designed method (see Fig. 2), this paper is organized as follows: the
visual segmentation and detection of objects are described in Sec. 2 and 3. In Sec. 4 we
outline the tracking problem and its solution. Experimental results are given in Sec. 5 and
discussed in Sec. 6.

Fig. 2. Flowchart of the whole designed method

2. Object Segmentation

A common element of any surveillance systems is a module that is capable of identifying the
set of pixels which represents all the individuals under study in each captured image. There
are several techniques to carry out this task. For example, the background modeling
approach (Toyama et al., 1999; Haritaoglu et al., 2000) allows to model dynamic factors such
as blinking of screens, shadows, mirror images on the glass windows or small variations in
illumination due to flickering of light sources. Pixels are classified as background or
foreground depending on the fitting of their values with the built model. As a drawback,
this method is not capable of adapting to sudden illumination changes, and we ruled it out
with the aim of developing a more robust surveillance application in the presence of
variation of lighting conditions. On the other hand, most of the alternative techniques are
developed by gray-level image processing so that if available images are in color, it is
necessary to convert them to gray-level. As our system has color images as input, the binary
image resulting from the segmentation process can be obtained from a combination of three

binary images (each color channel generates a gray-level image which is segmented by the
selected method obtaining a different binary image), or from a gray-level image obtained
directly from the color one.
Thus, the first step is to convert the captured color image to a gray-level one. For such
preprocessing, the Hue-Saturation-Intensity (HSI) system is used since it encodes color
information by separating an overall intensity value I from two values encoding chromaticity
- hue H and saturation S. HSI might also provide better support for computer vision
algorithms because it is amenable to normalization for lighting and focus on the two
chromaticy parameters that are more associated with the intrinsic character of a surface
rather than the lightning source. Thus, the resulting gray-level image is only built from the
intensity value. Derivation of HSI coordinates from RGB coordinates is a common process in
computer vision (Shapiro and Stockman, 2001).
Once the gray-scale image is available, a segmentation process has to be applied on it.
Although frame difference is the easiest and fastest method to detect moving objects in an
image, it fails when the objects are steady. This problem could be solved by taking a
reference image with no objects and subtracting it from the new ones. Nevertheless, a little
illumination change might make the whole process fail, thus, an alternative algorithm
should be chosen. In our case, the corresponding binary image is obtained from an input
gray-scale by thresholding operations as in Swistrack. This technique defines a range of
brightness values in the original image: pixel value greater than a threshold (or lower,
depending on its definition) belongs to the foreground and the rest of pixels are classified as
background. The drawback of this method is the correct determination of the threshold. In
Swistrack two different kinds of reference images are used, depending on the mode in which
the system is operating:
 Static background: the background image is captured at the beginning of the

experiment and is not updated at any time;
 Running average: the reference image is built as the running average of all video frames

processed until that moment
The threshold is fixed in both cases and represents the minimum difference required to
classify a pixel as foreground. It is important to note that the fixed threshold is sensitive to
changes in lighting conditions, especially in the first operation mode in which the reference
image is not updated during all the experiment. Although the running average is more
capable of dealing with illumination changes, it might consider objects that stop moving for
a long period of time as part of the background, without detecting their presence in the
scene. We have implemented a method for automatically calculating the threshold based on
histogram properties by updating its value in each frame, in order to adapt it to variations of
the lighting conditions. This provides an advantage over the Swistrack method, as significant
intensity differences between the objects to be tracked and the background are not
necessary.
After the threshold setting, two consecutive morphological operations are applied on the
binary image resulting from the segmentation process. These steps are required to erase
isolated points or lines caused by different dynamic factors such as, for example, changes
induced by camera motion, sensor noise, non-uniform attenuation, blinking of lights or
atmospheric absorption. A 3x3 erode filter is used to delete these artefacts and then a 3x3
expand filter is applied to recover the foreground region. A result of the whole process can
be observed in Figure 3, where a group of micro-robots is seen from above. As it can be seen,

Swarm Robotics, From Biology to Robotics94

although the lighting conditions are not good in some places, the designed application is
capable of detecting all visible micro-robots in the image. However, the pixels due to light
reflexions on the arena are not removed from the image. This issue will be solved by means
of the implemented labeling method described in next section.

Fig. 3. An image captured by the system camera (left), the binary image obtained by the
segmentation process (center) and the resulting binary image after applying two
morphological operations (right)

3. Object Identification

The aim of this stage is to obtain a labeled image in which each label identifies one colony
member. This can be a difficult task when objects are touching one another, because an
identified blob contains all objects with, at least, one point in common. The method
implemented to achieve the above goal can be divided into three steps:

1. Labeling of the identified blobs in the input binary image. A row-by-row labeling
method (Shapiro and Stockman, 2001) is used to reduce the computational cost of the
whole process. The binary image is scanned twice: the first time to tag each
foreground pixel based on the labels of its neighbors and to establish equivalences
between different labels; the second, crossed scan, will unify tags which belong to the
same blob

2. Classification of the labeled blobs as targets to be tracked or as bad-segmented pixels,
and detection of collisions inside a blob identified as a tracking target. All targets are
assumed as not touching in the first captured image. The number of targets to be
tracked is specified by the user, and the application calculates the minimal and
maximal size allowed from the first captured image. This knowledge, together with
the number of the detected blobs in each frame, allows to define a series of criteria to
determine when a blob represents more than one object, and to reject all blobs that do
not identify target objects but are instead the result of a bad segmentation, as it occurs
with the set of noisy pixels in the example of Fig. 3

3. Segmentation of blobs that represent groups of more than one object to be tracked. This
step is explained in more detail in the next section

As seen above, it is possible that the same blob identifies more than one object to be tracked.
Thus, it is important to detect these situations and split up the blob in the corresponding
objects. There are two different tasks to be performed: determining the number of touching
objects inside the same blob and splitting them up.
The first goal is achieved through several criteria which are relationships between blobs and
object sizes. They can be easily set up by the application, assuming that no target objects are
touching in the first captured image. Thus, our application calculates the maximum and

minimum dimensions of the visual objects from the first captured scene and the criteria
remain set. This step is important because perceived object size can vary with the distance
between the arena and the camera and if an object size in pixels is directly related to its real
size, as in Swistrack, a calibration error can be introduced in all calculations. Due to this
error, the application might fail the tracking process. So, the only parameter our application
needs, which is requested to the user, is the number of objects to be tracked.
The next step is to split up the different objects which compose one blob. As it is difficult to
identify several objects at the same time, we have studied three different, possible situations
assuming that only two objects are touching. Thus, our application split up any complex blob
in two different parts: one target object and another blob which can be again composed of
more than one micro-robot. If the new blob represents several micro-robots, the split-up
process is recursively applied until the obtained blob is composed of only one target object.
The three different cases that have been studied are the following:

1. two objects touching only in one point;
2. two objects sharing one side, that is, they are horizontally or vertically aligned;
3. two objects touching in several points which do not correspond to their sides

In the first case, a contour method is used. A chain code is calculated by considering that the
contact pixel will be visited twice. The method takes into account the contour irregularities
due to the segmentation process and it applies different criteria to determine the correct
contact point as shown in Fig. 4.

Case 1 Case 2 Case 3

Fig. 4. Colored images from the resolution of contact cases

The second case, when two objects share one side, has been considered because of the micro-
robots used in our experiments, the Alice2002 (Caprari and Siegwart, 2005) (see Fig. 5). These
micro-robots can be seen from above as boxes and two Alice2002 can share one side in any
moment. It is important to note that this case does not apply to micro-robots that do not
have a shape in which a side can be shared. A method based on dimension criteria is used to
determine the common side, and it estimates their splitting line as shown in Fig. 4.

(a) A micro-robot Alice 2002 (b) Infrared proximity sensors

Fig. 5. Micro-robot Alice2002

Finally, the most general and complex case is when an object and another blob compose a
bigger blob, and the contact between them is through several pixels which do not correspond
to an object side. Therefore, the designed method is based on holes inside blobs. Again, this
might be the result of a bad segmentation. For this reason, a set of criteria were defined for

Visual Analysis of Robot and Animal Colonies 95

although the lighting conditions are not good in some places, the designed application is
capable of detecting all visible micro-robots in the image. However, the pixels due to light
reflexions on the arena are not removed from the image. This issue will be solved by means
of the implemented labeling method described in next section.

Fig. 3. An image captured by the system camera (left), the binary image obtained by the
segmentation process (center) and the resulting binary image after applying two
morphological operations (right)

3. Object Identification

The aim of this stage is to obtain a labeled image in which each label identifies one colony
member. This can be a difficult task when objects are touching one another, because an
identified blob contains all objects with, at least, one point in common. The method
implemented to achieve the above goal can be divided into three steps:

1. Labeling of the identified blobs in the input binary image. A row-by-row labeling
method (Shapiro and Stockman, 2001) is used to reduce the computational cost of the
whole process. The binary image is scanned twice: the first time to tag each
foreground pixel based on the labels of its neighbors and to establish equivalences
between different labels; the second, crossed scan, will unify tags which belong to the
same blob

2. Classification of the labeled blobs as targets to be tracked or as bad-segmented pixels,
and detection of collisions inside a blob identified as a tracking target. All targets are
assumed as not touching in the first captured image. The number of targets to be
tracked is specified by the user, and the application calculates the minimal and
maximal size allowed from the first captured image. This knowledge, together with
the number of the detected blobs in each frame, allows to define a series of criteria to
determine when a blob represents more than one object, and to reject all blobs that do
not identify target objects but are instead the result of a bad segmentation, as it occurs
with the set of noisy pixels in the example of Fig. 3

3. Segmentation of blobs that represent groups of more than one object to be tracked. This
step is explained in more detail in the next section

As seen above, it is possible that the same blob identifies more than one object to be tracked.
Thus, it is important to detect these situations and split up the blob in the corresponding
objects. There are two different tasks to be performed: determining the number of touching
objects inside the same blob and splitting them up.
The first goal is achieved through several criteria which are relationships between blobs and
object sizes. They can be easily set up by the application, assuming that no target objects are
touching in the first captured image. Thus, our application calculates the maximum and

minimum dimensions of the visual objects from the first captured scene and the criteria
remain set. This step is important because perceived object size can vary with the distance
between the arena and the camera and if an object size in pixels is directly related to its real
size, as in Swistrack, a calibration error can be introduced in all calculations. Due to this
error, the application might fail the tracking process. So, the only parameter our application
needs, which is requested to the user, is the number of objects to be tracked.
The next step is to split up the different objects which compose one blob. As it is difficult to
identify several objects at the same time, we have studied three different, possible situations
assuming that only two objects are touching. Thus, our application split up any complex blob
in two different parts: one target object and another blob which can be again composed of
more than one micro-robot. If the new blob represents several micro-robots, the split-up
process is recursively applied until the obtained blob is composed of only one target object.
The three different cases that have been studied are the following:

1. two objects touching only in one point;
2. two objects sharing one side, that is, they are horizontally or vertically aligned;
3. two objects touching in several points which do not correspond to their sides

In the first case, a contour method is used. A chain code is calculated by considering that the
contact pixel will be visited twice. The method takes into account the contour irregularities
due to the segmentation process and it applies different criteria to determine the correct
contact point as shown in Fig. 4.

Case 1 Case 2 Case 3

Fig. 4. Colored images from the resolution of contact cases

The second case, when two objects share one side, has been considered because of the micro-
robots used in our experiments, the Alice2002 (Caprari and Siegwart, 2005) (see Fig. 5). These
micro-robots can be seen from above as boxes and two Alice2002 can share one side in any
moment. It is important to note that this case does not apply to micro-robots that do not
have a shape in which a side can be shared. A method based on dimension criteria is used to
determine the common side, and it estimates their splitting line as shown in Fig. 4.

(a) A micro-robot Alice 2002 (b) Infrared proximity sensors

Fig. 5. Micro-robot Alice2002

Finally, the most general and complex case is when an object and another blob compose a
bigger blob, and the contact between them is through several pixels which do not correspond
to an object side. Therefore, the designed method is based on holes inside blobs. Again, this
might be the result of a bad segmentation. For this reason, a set of criteria were defined for

Swarm Robotics, From Biology to Robotics96

detecting when a hole is due to bad segmentation and when it is a hole between two
different objects. As it can be seen in Fig. 4, the designed method provides successful results.

4. Tracking Micro-robots

Once each micro-robot is identified as an object, the next step is to match each object with
one of those detected in the previous frame, in order to obtain its trajectory.
Object position can be calculated as the geometrical center of gravity of object contour
(Correll et al., 2006), but we decided to calculate it as the geometrical center of gravity of a
blob corresponding to an object. Since the correspondence between an object and a blob has
been obtained in the previous step, this procedure is easier and faster. The issue now is how
to associate each center of gravity with its corresponding object between the new ones. The
chosen solution, the nearest neighbor method, is an easy one, but its implementation raises
several issues (Correll et al., 2006). The different way of dealing with them will determine
the successfulness of the application.
The first challenge to solve is the case of an object that is closer to the previous position than
the real one (situation already described in a previous work (Correll et al., 2006)). A
quadratic assignment problem for minimizing the sum over the distance of all assignments
is used in Swistrack, but this does not constitute an optimum solution since it fails in some
cases. On the contrary, a solution focused on the previous movements of objects is presented
here, that is, the matching algorithm associates the information on the nearest neighbor with
that regarding the previous movement direction.
It might also be that an object disappears from the scene (Correll et al., 2006), but if the
application does not detect all elements specified by the user, then it will fail when this
situation occurs, because objects enter or leave the arena, and the system will repeatedly
capture another image until it finds all the objects. Another situation (again presented in
(Correll et al., 2006)) is when two shared trajectories are divided at the wrong time, but this
is not possible in our application because blobs are divided into their corresponding objects
even though they are touching, as previously explained. Finally, an additional skill of our
application is the ability of avoiding un-associated contours.
Overall, our application is capable of solving the four different situations expounded in
(Correll et al., 2006) and does not need the help of the user for correcting wrong trajectories.
It is also important to note that the modified nearest neighbor technique is only applied on a
small region of the image, not on the whole image, in order to make the application faster.
Again, it is not possible to fix the search area size because a delay can be produced during
capture process. Thus, our application calculates the search area dimension based on
capture time between frames and the maximum velocity of tracking objects, which will be
requested to the user. This reduces the computational time and guarantees the success of the
matching process.

5. Experiments

We first provide a brief overview of the robotic platform used, followed by the experimental
results.
The experimental setup is depicted in Figure 6. A camera is pointing downwards to the
desktop where the micro-robots are working. Our application operates with monocular

color video images (see Fig. 6). The distance between the camera and the arena can vary
from one setup to another and the system calculates the parameter values needed for
obtaining the different criteria. It is important to note that the background of the micro-robot
workspace is black in all our experiments, while the most common solution is to use a white
background.

Fig. 6. Experimental setup (left) and a 320x240 captured image by the camera (right)

The objects to be tracked are Alice2002 robots, as mentioned above. They are extremely
sensitive to external forces and can be very easily damaged if not handled with care. Among
their features, we can mention:

 tiny dimensions (22 mm (width) x 21 mm (length) x 20 mm (height))
 small weight (aproximately 11 g)
 infrared proximity sensors (front, right and left) to avoid obstacles
 low consumption (12 - 17 mW)
 autonomy (up to 10 hours thanks to its Ni-MH rechargeable battery (Varta 3/V40H))
 velocity of 40 mm/s

Finally, a Graphical User Interface (GUI) has been developed to check the performance of
our application. It is composed of two different windows (see Figure 7(a)): on the left, the
user can observe the images taken in real-time and, on the right, a graphical window is
showing the different positions of the objects. Each obtained trajectory is drawn in a
different color to help the user identify each target. As the duration of the experiments is
unknown and the amount of points can be considerable, the application only shows the last
seventy object positions to ease tracking of each described trajectory to the user.
Two different experiments have been carried out. The first one is the tracking of three
unmarked Alice2002 (see Figure 7). Six untagged Alice2002 are studied in the second
experiment (Fig. 8). Both experiments have been carried out at different times of the day and
in different days to test the robustness of our application to different lighting conditions.
As it can be seen in Fig. 7a, all micro-robots to be tracked are not touching in the first stage.
Thus, our application can obtain the information it needs: the objects position, i.e., their
geometrical center of gravity, and the maximum and minimum size allowed for any object.
For clarity of representation, objects are highlighted by inscribing them in circles.
Although there are relevant delays between the first and the second frames and between the
second and the third ones, our application is capable of correctly tracking the objects as
shown in Fig. 7b.
To check the system in different situations, we have changed the moving pattern of the
objects during the experiment. For the first 25 frames all three objects are describing a

Visual Analysis of Robot and Animal Colonies 97

detecting when a hole is due to bad segmentation and when it is a hole between two
different objects. As it can be seen in Fig. 4, the designed method provides successful results.

4. Tracking Micro-robots

Once each micro-robot is identified as an object, the next step is to match each object with
one of those detected in the previous frame, in order to obtain its trajectory.
Object position can be calculated as the geometrical center of gravity of object contour
(Correll et al., 2006), but we decided to calculate it as the geometrical center of gravity of a
blob corresponding to an object. Since the correspondence between an object and a blob has
been obtained in the previous step, this procedure is easier and faster. The issue now is how
to associate each center of gravity with its corresponding object between the new ones. The
chosen solution, the nearest neighbor method, is an easy one, but its implementation raises
several issues (Correll et al., 2006). The different way of dealing with them will determine
the successfulness of the application.
The first challenge to solve is the case of an object that is closer to the previous position than
the real one (situation already described in a previous work (Correll et al., 2006)). A
quadratic assignment problem for minimizing the sum over the distance of all assignments
is used in Swistrack, but this does not constitute an optimum solution since it fails in some
cases. On the contrary, a solution focused on the previous movements of objects is presented
here, that is, the matching algorithm associates the information on the nearest neighbor with
that regarding the previous movement direction.
It might also be that an object disappears from the scene (Correll et al., 2006), but if the
application does not detect all elements specified by the user, then it will fail when this
situation occurs, because objects enter or leave the arena, and the system will repeatedly
capture another image until it finds all the objects. Another situation (again presented in
(Correll et al., 2006)) is when two shared trajectories are divided at the wrong time, but this
is not possible in our application because blobs are divided into their corresponding objects
even though they are touching, as previously explained. Finally, an additional skill of our
application is the ability of avoiding un-associated contours.
Overall, our application is capable of solving the four different situations expounded in
(Correll et al., 2006) and does not need the help of the user for correcting wrong trajectories.
It is also important to note that the modified nearest neighbor technique is only applied on a
small region of the image, not on the whole image, in order to make the application faster.
Again, it is not possible to fix the search area size because a delay can be produced during
capture process. Thus, our application calculates the search area dimension based on
capture time between frames and the maximum velocity of tracking objects, which will be
requested to the user. This reduces the computational time and guarantees the success of the
matching process.

5. Experiments

We first provide a brief overview of the robotic platform used, followed by the experimental
results.
The experimental setup is depicted in Figure 6. A camera is pointing downwards to the
desktop where the micro-robots are working. Our application operates with monocular

color video images (see Fig. 6). The distance between the camera and the arena can vary
from one setup to another and the system calculates the parameter values needed for
obtaining the different criteria. It is important to note that the background of the micro-robot
workspace is black in all our experiments, while the most common solution is to use a white
background.

Fig. 6. Experimental setup (left) and a 320x240 captured image by the camera (right)

The objects to be tracked are Alice2002 robots, as mentioned above. They are extremely
sensitive to external forces and can be very easily damaged if not handled with care. Among
their features, we can mention:

 tiny dimensions (22 mm (width) x 21 mm (length) x 20 mm (height))
 small weight (aproximately 11 g)
 infrared proximity sensors (front, right and left) to avoid obstacles
 low consumption (12 - 17 mW)
 autonomy (up to 10 hours thanks to its Ni-MH rechargeable battery (Varta 3/V40H))
 velocity of 40 mm/s

Finally, a Graphical User Interface (GUI) has been developed to check the performance of
our application. It is composed of two different windows (see Figure 7(a)): on the left, the
user can observe the images taken in real-time and, on the right, a graphical window is
showing the different positions of the objects. Each obtained trajectory is drawn in a
different color to help the user identify each target. As the duration of the experiments is
unknown and the amount of points can be considerable, the application only shows the last
seventy object positions to ease tracking of each described trajectory to the user.
Two different experiments have been carried out. The first one is the tracking of three
unmarked Alice2002 (see Figure 7). Six untagged Alice2002 are studied in the second
experiment (Fig. 8). Both experiments have been carried out at different times of the day and
in different days to test the robustness of our application to different lighting conditions.
As it can be seen in Fig. 7a, all micro-robots to be tracked are not touching in the first stage.
Thus, our application can obtain the information it needs: the objects position, i.e., their
geometrical center of gravity, and the maximum and minimum size allowed for any object.
For clarity of representation, objects are highlighted by inscribing them in circles.
Although there are relevant delays between the first and the second frames and between the
second and the third ones, our application is capable of correctly tracking the objects as
shown in Fig. 7b.
To check the system in different situations, we have changed the moving pattern of the
objects during the experiment. For the first 25 frames all three objects are describing a

Swarm Robotics, From Biology to Robotics98

clockwise circular trajectory. A different circular trajectory with smaller radius is described
during the next 25 frames, as shown in Fig. 7d. Finally, the micro-robots are set in wall
following mode, so they describe a straight-line trajectory until they find a wall to follow, as
can be observed in Fig. 7e.
The second experiment was similar. In this case, our application had to track six unmarked
Alice2002. Again, the first captured frame (see Fig. 8a) reveals that the experiment starts
without collisions between objects. The trajectories described in this experiment are, first,
the smallest-radius circular trajectory; then, four of the micro-robots change their trajectory
describing a circular trajectory with a larger radius and the two remaining ones go straight
ahead looking for a wall to follow. Now, two more micro-robots change to the wall
following mode. It is important to note that our application is capable of detecting objects
only partially visible as shown in Fig. 8d.

(a) Initial State (b) After 5 frames (c) Circular
trajectory

(d) Circular
trajectory with a
different radius

(e) Following wall
mode

Fig. 7. Three Alice2002 tracking experiment: captured image (up) and trajectory image
(down)

(a) First Stage (b) Circular

Trajectory
(c) Change in some

trajectories
(d) Another change
in some trajectories

(e) Following wall
mode

Fig. 8. Six Alice2002 tracking experiment

In addition, examples of the use of our split-up method are finally shown in Fig. 9. A one-
shot video segment of 10 minute duration is available at
 http://www.robot.uji.es/lab/plone/Members/emartine

Fig. 9. Collision detection

To conclude this section, a graph is presented (see Fig. 10) which compares the trajectory
followed by a member of the studied colony in a multiple-target experiment versus the
trajectory obtained by the developed software. As it can be observed, there is no mismatch
in data-association thanks to the implemented method to split up blobs when several
members are in touch.

Fig. 10. Trajectory followed by a single target vs individual trajectory obtained by the
implemented software (above) and error (below)

Visual Analysis of Robot and Animal Colonies 99

clockwise circular trajectory. A different circular trajectory with smaller radius is described
during the next 25 frames, as shown in Fig. 7d. Finally, the micro-robots are set in wall
following mode, so they describe a straight-line trajectory until they find a wall to follow, as
can be observed in Fig. 7e.
The second experiment was similar. In this case, our application had to track six unmarked
Alice2002. Again, the first captured frame (see Fig. 8a) reveals that the experiment starts
without collisions between objects. The trajectories described in this experiment are, first,
the smallest-radius circular trajectory; then, four of the micro-robots change their trajectory
describing a circular trajectory with a larger radius and the two remaining ones go straight
ahead looking for a wall to follow. Now, two more micro-robots change to the wall
following mode. It is important to note that our application is capable of detecting objects
only partially visible as shown in Fig. 8d.

(a) Initial State (b) After 5 frames (c) Circular
trajectory

(d) Circular
trajectory with a
different radius

(e) Following wall
mode

Fig. 7. Three Alice2002 tracking experiment: captured image (up) and trajectory image
(down)

(a) First Stage (b) Circular

Trajectory
(c) Change in some

trajectories
(d) Another change
in some trajectories

(e) Following wall
mode

Fig. 8. Six Alice2002 tracking experiment

In addition, examples of the use of our split-up method are finally shown in Fig. 9. A one-
shot video segment of 10 minute duration is available at
 http://www.robot.uji.es/lab/plone/Members/emartine

Fig. 9. Collision detection

To conclude this section, a graph is presented (see Fig. 10) which compares the trajectory
followed by a member of the studied colony in a multiple-target experiment versus the
trajectory obtained by the developed software. As it can be observed, there is no mismatch
in data-association thanks to the implemented method to split up blobs when several
members are in touch.

Fig. 10. Trajectory followed by a single target vs individual trajectory obtained by the
implemented software (above) and error (below)

Swarm Robotics, From Biology to Robotics100

6. Conclusions

We have presented a tracking application to study micro-robots or social insect cooperative
behavior without the risk of conditioning the results by tagging them. Our system has been
compared with previous ones, and namely with Swistrack, an application intended to control
mixed societies. Although this previous study had the same goal, the authors deal with the
tracking problem in a different way. The given results have shown the robustness of our
application with regard to lighting conditions. Also, no special illumination is required and
performances do not depend on the surrounding objects, as for example it occurs in
Swistrack.
Our designed method also solves situations in which there are several objects touching one
another and it can match an object position in one frame with its position in the next frame.
It is also capable of detecting objects even though their velocity is very slow or if they do not
move, a case typically difficult for similar methods.
As a further achievement, our application only requires two parameters from the user: the
number of target objects and their maximum speed. No thresholds need to be set manually.
Overall, we have designed an application transparent to the user who does not need to
know the implementation details to work with it.
So far, our application has only been tested with homogeneous robotic societies. As further
research, we plan to test it with mixed societies.

7. Acknowledges

This research was partly supported by the Korea Science and Engineering Foundation under
the WCU (World Class University) program funded by the Ministry of Education, Science
and Technology, S. Korea, Grant No. R31-2008-000-10062-0), by the European Commission's
Seventh Framework Programme FP7/2007-2013 under grant agreement 217077 (EYESHOTS
project), by Ministerio de Ciencia e Innovacion (DPI-2008-06636, DPI2004-01920 and FPI
grant BES-2005-8860), by Generalitat Valenciana (PROMETEO/2009/052) and by Fundacio
Caixa Castello-Bancaixa (P1-1B2008-51)

8. References

Camazine S.; Deneubourg J.L.; Franks N.R.; Sneyd J.; Theraulaz G. and Bonabeau E. (2001).
Self-Organization in Biological Systems. Princeton Studies in Complexity, Princeton
University Press

Caprari G.; Colot A.; Siegwart R.; Halloy J. and Deneubourg J.L. (2005). Building mixed
societies of animals and robots. IEEE Robotics and Automation Magazine, 12, 2, (58-65)

Caprari G. and Siegwart R. (2005). Mobile micro-robots ready to use: Alice, Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3295 – 3300

Correll N.; Sempo G.; Lopez de Meneses Y.; Halloy J.; Deneubourg J.L. and Martinoli A.
(2006). Swistrack: A tracking tool for multi-unit robotic and biological systems,
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2185-2191

Gavrila D.M. (1999). The visual analysis of human movement: A survey. Computer Vision and
Image Understanding, 73, 1, (82–98)

Haritaoglu I.; Harwood D. and Davis L.S. (2000). W4: Real-time surveillance of people and
their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 8,
(809 – 830)

Toyama K., Krum J., Brumitt B., and Meyers B. (1999). Wallflower: Principles and practice of
background maintenance, Proceedings of the Seventh IEEE International Conference on
Computer Vision, volume 1, pp. 255 – 261, Kerkyra, Greece

Radke R.J.; Andra S.; Al-Kofahi O. and Roysam B. (2005). Image change detection
algorithms: A systematic survey. IEEE Transactions on Image Processing, 14, 3,
(March), (294-307)

Russ J.C. (1998). The Image Processing Handbook, CRC Press, third edition
Shapiro L.G. and Stockman G.C. (2001). Computer Vision, Prentice Hall, NJ

Visual Analysis of Robot and Animal Colonies 101

6. Conclusions

We have presented a tracking application to study micro-robots or social insect cooperative
behavior without the risk of conditioning the results by tagging them. Our system has been
compared with previous ones, and namely with Swistrack, an application intended to control
mixed societies. Although this previous study had the same goal, the authors deal with the
tracking problem in a different way. The given results have shown the robustness of our
application with regard to lighting conditions. Also, no special illumination is required and
performances do not depend on the surrounding objects, as for example it occurs in
Swistrack.
Our designed method also solves situations in which there are several objects touching one
another and it can match an object position in one frame with its position in the next frame.
It is also capable of detecting objects even though their velocity is very slow or if they do not
move, a case typically difficult for similar methods.
As a further achievement, our application only requires two parameters from the user: the
number of target objects and their maximum speed. No thresholds need to be set manually.
Overall, we have designed an application transparent to the user who does not need to
know the implementation details to work with it.
So far, our application has only been tested with homogeneous robotic societies. As further
research, we plan to test it with mixed societies.

7. Acknowledges

This research was partly supported by the Korea Science and Engineering Foundation under
the WCU (World Class University) program funded by the Ministry of Education, Science
and Technology, S. Korea, Grant No. R31-2008-000-10062-0), by the European Commission's
Seventh Framework Programme FP7/2007-2013 under grant agreement 217077 (EYESHOTS
project), by Ministerio de Ciencia e Innovacion (DPI-2008-06636, DPI2004-01920 and FPI
grant BES-2005-8860), by Generalitat Valenciana (PROMETEO/2009/052) and by Fundacio
Caixa Castello-Bancaixa (P1-1B2008-51)

8. References

Camazine S.; Deneubourg J.L.; Franks N.R.; Sneyd J.; Theraulaz G. and Bonabeau E. (2001).
Self-Organization in Biological Systems. Princeton Studies in Complexity, Princeton
University Press

Caprari G.; Colot A.; Siegwart R.; Halloy J. and Deneubourg J.L. (2005). Building mixed
societies of animals and robots. IEEE Robotics and Automation Magazine, 12, 2, (58-65)

Caprari G. and Siegwart R. (2005). Mobile micro-robots ready to use: Alice, Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3295 – 3300

Correll N.; Sempo G.; Lopez de Meneses Y.; Halloy J.; Deneubourg J.L. and Martinoli A.
(2006). Swistrack: A tracking tool for multi-unit robotic and biological systems,
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2185-2191

Gavrila D.M. (1999). The visual analysis of human movement: A survey. Computer Vision and
Image Understanding, 73, 1, (82–98)

Haritaoglu I.; Harwood D. and Davis L.S. (2000). W4: Real-time surveillance of people and
their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 8,
(809 – 830)

Toyama K., Krum J., Brumitt B., and Meyers B. (1999). Wallflower: Principles and practice of
background maintenance, Proceedings of the Seventh IEEE International Conference on
Computer Vision, volume 1, pp. 255 – 261, Kerkyra, Greece

Radke R.J.; Andra S.; Al-Kofahi O. and Roysam B. (2005). Image change detection
algorithms: A systematic survey. IEEE Transactions on Image Processing, 14, 3,
(March), (294-307)

Russ J.C. (1998). The Image Processing Handbook, CRC Press, third edition
Shapiro L.G. and Stockman G.C. (2001). Computer Vision, Prentice Hall, NJ

Swarm Robotics, From Biology to Robotics102

	Preface
	Bio-inspired search strategies for robot swarms
	James M. Hereford and Michael A. Siebold
	A New Hybrid Particle Swarm Optimization Algorithm to the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem
	Isa Nakhai Kamalabadi, Ali Hossein Mirzaei and Saeede Gholami
	Comparison of Swarm Optimization and Genetic Algorithm for Mobile Robot Navigation
	Petar Ćurković, Bojan Jerbić and Tomislav Stipančić
	Key Aspects of PSO-Type Swarm Robotic Search: Signals Fusion and Path Planning
	Songdong Xue, Jianchao Zeng and Jinwei Guo
	Optimization Design Method of IIR Digital Filters for Robot Force Position Sensors
	Fuxiang Zhang
	Visual Analysis of Robot and Animal Colonies
	E. Martínez and A.P. del Pobil

